Calibração de Acelerômetro Triaxial Utilizando Filtro de Kalman

Fernando A. A. Coelho¹, Fernando P. dos Santos², Fernando C. Lizarralde³ e Marcos Pinto⁴ DSAM/Marinha do Brasil¹, PEE-COPPE/UFRJ², PEE-COPPE/UFRJ³ e IPqM/Marinha do Brasil⁴

Resumo — Este artigo apresenta um novo modelo de calibração para os acelerômetros de Unidades de Medidas Inerciais (UMI) e propõe a aplicação de um Filtro de Kalman Estendido (Extended Kalman Filter) para a estimação dos parâmetros do modelo. O modelo e a técnica de estimação propostos foram comparados com outros modelos e métodos pesquisados na literatura.

Palavras-chaves — Acelerômetro triaxial, Modelagem, Calibração, Filtro de Kalman.

I. INTRODUÇÃO

A equação (1) apresenta o modelo para calibração do acelerômetro pendular sugerido pelo IEEE [1].

$$V = (a_x + b + \gamma_y a_z + \gamma_z a_y + B_{xz} a_x a_z + B_{xy} a_x a_y + B_{xx} a_x^2 + B_{xxx} a_x^3) K$$
(1)

Onde:

- V = tensão elétrica medida na saída do acelerômetro (V);

- a_x = componente de aceleração no centro de gravidade do pêndulo do acelerômetro ao longo do eixo de medição, x (m/s²);

- a_y = componente de aceleração no centro de gravidade do pêndulo do acelerômetro ao longo do eixo y, ortogonal a x (m/s²);

- a_z = componente de aceleração no centro de gravidade do pêndulo do acelerômetro ao longo do eixo *z*, ortogonal a *x* e a - *y* (m/s²);

- K = fator de escala do acelerômetro (Vs²/m);

- b = "bias" ou deriva permanente do acelerômetro (m/s²);

- γ_y = desalinhamento em torno do eixo y (rad);

- γ_z = desalinhamento em torno do eixo z (rad);

- B_{xy} (B_{xz}) = deriva devida a entrada simultânea de acelerações nos eixos x e y (x e z) (s²/m); e

- B_{xx} e B_{yyy} : deriva devida a não-linearidade quadrática e cúbica, respectivamente [(s²/m) e (s⁴/m²) respectivamente].

Este modelo, por apresentar termos de deriva cruzada (B_{xy} e B_{xz}), torna difícil a sua utilização na prática, quando o que se deseja é: dado V, achar a_x , a_y e a_z ao qual está submetido o acelerômetro.

Mesmo com o uso de três acelerômetros nas posições ortogonais, a solução deste problema tornar-se complexa ao pondo de tornar o modelo desinteressante.

Um modelo simplificado, em que são negligenciados os termos de deriva cruzada e os termos de deriva quadrática (B_{xx}) e cúbica (B_{xxx}) vem sendo preferido em trabalhos mais recentes [3]. Este modelo, no entanto, não leva em conta as não-linearidades que são comuns em sistemas dessa natureza, e que na UMI em estudo chega a ser de 0,23% do fundo de escala [4].

O modelo proposto neste trabalho despreza os termos cruzados, porém mantém os termos quadráticos e cúbicos de modo a reduzir a não-linearidade com a calibração. O modelo resultante, apresentado na equação (2), é uma equação de terceiro grau, que possui solução conhecida na Álgebra [5].

$$V_{i} = S_{i} \cdot a_{i} + S_{2i} a_{i}^{2} + S_{3i} a_{i}^{3} + \delta_{i}$$
(2)

Onde:

- i = índice que representa o acelerômetro do conjunto triaxial, podendo ser 1, 2 ou 3.

- V_i = tensão elétrica medida na saída do acelerômetro *i* (V); - a_i = componente de aceleração no centro de gravidade do pêndulo do acelerômetro *i* ao longo do seu eixo de medição (m/s²);

- S_i = fator de escala do acelerômetro *i* (Vs²/m);

- δ_t = "bias" ou deriva permanente do acelerômetro *i* (m/s²); e - S_{2i} e S_{3i} = termos quadrático e cúbico do acelerômetro *i*.

Nesta equação os desalinhamentos dos acelerômetros não aparecem explicitamente, porém ao se escrever a aceleração a_i em função das componentes de aceleração no triedro de vetores ortonormais da mesa inercial, X_m , Y_m , Z_m , estes desalinhamentos aparecem explicitamente na equação, conforme será desenvolvido a seguir.

Faça o índice *m* denotar o triedro da mesa inercial e *b* da base da mesa simuladora de movimentos que, neste procedimento, será considerada alinhada com a vertical do lugar. O triedro *m* também será considerado inercial, pois os sensores em estudo não têm sensibilidade para "sentir" a rotação da terra. Seja x^m a representação do vetor unitário na direção X_m , no triedro da mesa, ou seja,

$$\boldsymbol{x}^{m} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathrm{T}} \tag{3}$$

Rotacionando-se x^m de um ângulo β_t em torno do eixo Y_m (*pitch*), em seguida de um ângulo γ_t em torno do eixo Z_m (*yaw*), obteremos um vetor unitário P_i^m na direção do acelerômetro *i*, representado na base *m*.

O vetor P_i^m, então, pode ser representado por prémultiplicações das matrizes de rotação unitárias R_{yi} e R_{zi} pelo vetor x^m [2].

$$R_{yi} \stackrel{\Delta}{=} \begin{bmatrix} \cos \beta_i & 0 & \sin \beta_i \\ 0 & 1 \\ -\sin \beta_i & 0 & \cos \beta_i \end{bmatrix}$$
(4)

$$R_{zi} \stackrel{\Delta}{=} \begin{bmatrix} \cos \gamma_i & -\sin \gamma_i & 0\\ \sin \gamma_i & \cos \gamma_i & 0\\ 0 & 0 & 1 \end{bmatrix}$$
(5)

$$P_i^m = R_{zi} R_{yi} x^m = \begin{bmatrix} \cos \gamma_i \cos \beta_i \\ \sin \gamma_i \cos \beta_i \\ -\sin \beta_i \end{bmatrix}$$
(6)

Perceba-se que este conjunto de rotações elementares referese a rotações em torno do triedro fixo m. No entanto, o mesmo vetor P_i^m pode ser obtido rotacionando-se o vetor x^m de um ângulo γ_i em torno do eixo z, em seguida de um ângulo β_i em torno do eixo y' do triedro corrente. Desse modo as matrizes de rotações elementares (4) e (5) são pós-multiplicadas [2] gerando o mesmo resultado da equação (6).

1

Representando-se a aceleração a que está submetido o acelerômetro na base m, tem-se

$$a^{m} = \begin{bmatrix} a_{x} & a_{y} & a_{z} \end{bmatrix}^{\mathrm{T}}$$
(7)

A aceleração sentida pelo sensor i, então, é dada pelo produto escalar dos vetores (6) e (7)

$$a_i = (P_i^m)^{\mathrm{T}} a^m \tag{8}$$

Se o acelerômetro triaxial é montado sobre a mesa, de modo que os ângulos $\gamma \in \beta$ sejam pequenos, então podemos aproximar $\cos \gamma = \cos \beta = 1$, $\sin \gamma = \gamma e \sin \beta = \beta$, e a equação (8) torna-se

$$a_i = a_x + \gamma a_y - \beta a_z \tag{9}$$

Substituindo (9) em (2), e eliminando-se os termos de ordem superior de $\gamma \in \beta$, obtém-se a equação (10) após reorganização dos termos.

$$V = Sa_{x} + S\gamma a_{y} - S\beta a_{z} + 2S_{2}\gamma a_{x}a_{y} - 2S_{2}\beta a_{x}a_{z} + S_{2}a_{x}^{2} + S_{3}a_{x}^{3} + 3S_{3}a_{x}^{2}(\gamma a_{y} - \beta a_{z}) + \delta$$
(10)

Na equação (10) o índice i foi suprimido para simplificar a notação.

Comparando-se (10) com (1) percebe-se que o modelo proposto, possui todos os termos sugeridos em (1), inclusive os termos de deriva cruzada, porém estes são função do termo quadrático (S_2) e do desalinhamento ($\gamma \in \beta$). Observe-se também que o penúltimo termo de (10) é um termo novo, que não existia no modelo da equação (1). Este termo sugere que a existência do desalinhamento ($\gamma \in \beta$) e do termo quadrático (a_x^2) , concomitantemente, também gera não-linearidade.

Em resumo, as equações (2), (6) e (8) combinadas representam nosso modelo para o acelerômetro triaxial. Calibrar os acelerômetros é encontrar os 18 parâmetros S_i , S_{1i} , S_{2i} , δ_i , γ_i e β_i , com i = 1, 2 ou 3. Como a voltagem fornecida pelo acelerômetro (V_i) vem adicionada a um ruído, deve-se estimar os 18 parâmetros que minimizam os erros para um conjunto de acelerações impostas ao sensor. No procedimento, também estimaremos o nível de ruído dos sensores.

Ao utilizar o acelerômetro, pretende-se revolver o problema inverso: dado V_i e conhecidos os 18 parâmetros, achar o vetor aceleração representado na base m. Para resolver este problema inicialmente resolvem-se as três equações do 3º grau (2) para a_i . Em seguida faz-se a correção dos desalinhamentos, multiplicando o vetor aceleração representado no triedro do acelerômetro, $[a_1 \ a_2 \ a_3]^T$, pela matriz de transformação formada pelos vetores-coluna P_i^m . O diagrama de blocos da Fig. 1 é uma representação deste algoritmo.

Fig. 1 - Diagrama de blocos do algoritmo para encontrar o vetor aceleração em função das voltagens fornecidas pelos sensores.

II. PROCEDIMENTO DE CALIBRAÇÃO

Para calibrar o acelerômetro, independentemente do método de estimação ou do modelo empregados, submete-se o acelerômetro a vários valores distintos de aceleração enquanto mede-se o sinal elétrico de saída, V. Em geral, a aceleração medida é a gravidade, e os valores distintos são obtidos alterando-se o ângulo do acelerômetro em relação à vertical.

Neste trabalho, foi utilizada uma mesa inercial simuladora de movimentos com dois graus de liberdade, pertencente ao Laboratório de Sensores Inerciais (LabSIn), do Instituto de Pesquisas da Marinha (IPqM). A UMI foi instalada sobre um suporte com ângulos de "tilt" e azimute diferentes de zero, de modo que, ao instalar o suporte sobre a mesa, variações em qualquer dos dois ângulos da mesa, gerariam variações de aceleração para os três acelerômetros ao mesmo tempo. Como o procedimento adotado estima os ângulos de alinhamento dos acelerômetros em relação à mesa ($\gamma \in \beta$), a precisão dos ângulos do suporte foi negligenciada nesta etapa, pois estão embutidos valores aqueles estimados.

A mesa foi posicionada em vinte posições distinta de ângulo de *pitch* (α), entre -135° e +135°, enquanto que para cada posição de *pitch*, o ângulo de yaw (β) era variado também de -135° e +135°, também com vinte posições diferentes. Para cada posição da mesa, foram tomadas 50 medidas de cada um dos acelerômetros, de modo que, ao final do processo, tinham-se 20 mil medidas tomadas para cada acelerômetro. Adicionalmente, eram realizadas medições do termômetro interno da UMI para avaliar a variação dos parâmetros com a temperatura. Mais tarde foi realizada a validação dos dados, através do checksum, de modo que restaram 14.900 medidas. Apesar da estimação por filtro de Kalman poder ser realizada em tempo real, fez-se a opção por gravar os dados e utilizálos mais tarde (modo *play-back*).

A UMI 3DM-G possui um conversor analógico-digital (A/D) interno, que converte as tensões elétricas dos sensores para o modo de 16 bits com um bit de sinal, de modo que os valores de saída variam de -32.768 a +32.767. Os dados após passarem pelo conversor A/D são chamados de *raws*, após passarem por correção dos desalinhamentos dos sensores passam a ser chamados de *bits* e podem também ter o *bias* corrigido e serem escalonados conforme as calibrações de fábrica. No procedimento de calibração adotado aqui, foram coletados os dados digitais na forma *bits*.

Para estimar os níveis de ruído dos sensores, foi calculado o desvio-padrão das 50 medidas tomadas para cada posição da mesa e, ao final, calculada a média quadrática (RMS – *rootmean-squared*) desses desvios-padrão. Os valores obtidos foram tomados como estimação dos valores RMS dos ruídos. Para os acelerômetros 1, 2 e 3, o procedimento resultou nos valores de ruídos 32,12rms, 37,77rms, 34,33rms, respectivamente, o que equivale a uma faixa dinâmica de 60,2dB, 58,8dB e 59,6dB, respectivamente.

A. Estimação dos parâmetros por mínimos-quadráticos

O procedimento de estimação dos parâmetros do modelo por mínimos quadráticos consiste em definir uma função-custo quadrática, *J*, e minimizá-la em função dos parâmetros do modelo. Este procedimento foi aplicado em [3] para calibrar o acelerômetro triaxial da UMI 3DM-G e o magnetômetro. Aplicou-se o mesmo método ao modelo proposto aqui, para comparar com o resultado obtido com o procedimento por filtro de Kalman que este trabalho propõe. Neste caso, foram definidas três funções-custo, uma para cada acelerômetro, conforme a equação (11).

$$J(S, S_2, S_3, \delta, \gamma, \beta) = \sum_k [V_k - (Sa(\gamma, \beta, \alpha_k, \theta_k) + S_2a(\gamma, \beta, \alpha_k, \theta_k)^2 + S_3a(\gamma, \beta, \alpha_k, \theta_k)^3 + \delta)]^2$$
(11)

A função *fminunc* do Matlab foi utilizada para minimizar esta função-custo, como foi feito em [3].

B. Estimação dos parâmetros por Filtro de Kalman

Para estimar os parâmetros utilizando Filtro de Kalman, sugere-se o seguinte modelo do sistema discreto para cada um dos três acelerômetros.

$$\begin{cases} X_{k+1} = X_k + w_{k+1} \\ Z_k = h(X_k) + v_{k+1} \end{cases}$$
(12)

Onde:

- $X = [S \gamma \beta S_2 S_3 \delta]^{T}$: estados a serem estimados;

-Z = voltagem medida do acelerômetro;

- h(X) = função não-linear que é o modelo (2) do acelerômetro;

- w = ruído que representa incertezas do modelo do sistema w=N(0,Q), com Q sendo a matriz de covariância do ruído; e - v = ruído de medição v = N(0,R), com R sendo a matriz de covariância do ruído de medição.

Durante o procedimento de calibração, os ângulos de *pitch* (α) e yaw (θ) da mesa serão alterados sucessivas vezes de

modo que a aceleração da gravidade seja medida pelos sensores para cada posição da mesa. A aceleração "sentida" no acelerômetro i é dada por

$$a_i = \left(P_i^b\right)^T g^b \tag{13}$$

Onde P_i^b e g^b são os vetores unitários (versores) que indicam a direção do acelerômetro e da gravidade, respectivamente, representados no triedro da base da mesa, *b*. O vesor P_i^b é dado por

$$P_i^b = R_v(\alpha) R_z(\theta) P_i^m \tag{14}$$

Como será considerado que a mesa está alinhada com a vertical do lugar, então $g^b = -g [0 \ 0 \ 1]^T$, que substituindo em (13) juntamente com (14) dá

$$a_{i} = -g\left[-\sin\alpha\cos\theta \quad \sin\alpha\sin\theta \quad \cos\alpha\right] \begin{bmatrix}\cos\gamma_{i}\cos\beta_{i}\\\sin\gamma_{i}\cos\beta_{i}\\-\sin\beta_{i}\end{bmatrix}$$
(16)

Onde g é a amplitude do vetor aceleração da gravidade. Desse modo, a função h(X) será dada por

$$h(X_{k+1}) = S_{k+1}a_{k+1} + S_{2_{k+1}}a_{k+1}^{2} + S_{3_{k+1}}a_{k+1}^{3} + \delta_{k+1}$$
(17)

Como o modelo é não linear, a função h(X) será usada na predição da medição, porém não pode ser aplicada diretamente à covariância [6]. Portanto, o filtro de Kalman a ser implementado é o estendido (EKF), de modo que devemos calcular o Jacobiano de h(X), conforme (18).

$$H_{k} = \begin{bmatrix} \frac{\partial h}{\partial S} & \frac{\partial h}{\partial \gamma} & \frac{\partial h}{\partial \beta} & \frac{\partial h}{\partial S_{2}} & \frac{\partial h}{\partial S_{3}} & \frac{\partial h}{\partial \delta} \end{bmatrix}_{k}$$
(18)

Onde:

$$\frac{\partial h}{\partial S}\Big|_{k} = a_{k}; \quad \frac{\partial h}{\partial S_{2}}\Big|_{k} = a_{k}^{2}; \quad \frac{\partial h}{\partial S_{3}}\Big|_{k} = a_{k}^{3}; \quad \frac{\partial h}{\partial \delta}\Big|_{k} = 1$$

$$\frac{\partial h}{\partial \gamma}\Big|_{k} = (S_{k} + 2S_{2_{k}}a_{k} + 3S_{3_{k}}a_{k}^{2})[R(\alpha, \theta)g^{m}]^{T}\begin{bmatrix} -\sin\gamma_{k}\cos\beta_{k}\\\cos\gamma_{k}\sin\beta_{k}\\0\end{bmatrix}$$

$$\frac{\partial h}{\partial \beta}\Big|_{k} = (S_{k} + 2S_{2_{k}}a_{k} + 3S_{3_{k}}a_{k}^{2})[R(\alpha, \theta)g^{m}]^{T}\begin{bmatrix} -\cos\gamma_{k}\sin\beta_{k}\\\sin\gamma_{k}\cos\beta_{k}\\-\cos\beta_{k}\end{bmatrix}$$

As equações para o Filtro de Kalman Estendido são:

<u>Predição</u>

$$\hat{X}_{k|k-1} = \hat{X}_{k-1}$$

 $P_{k|k-1} = P_{k-1|k-1} + Q$

<u>Atualização</u>

$$\begin{split} \tilde{y}_{k} &= Z_{k} - h(\hat{X}_{k|k-1}) \\ S_{k} &= H_{k} P_{k|k-1} H_{k}^{T} + R \\ K_{k} &= P_{k|k-1} H_{k}^{T} S^{-1} \\ \hat{x}_{k|k} &= \hat{x}_{k|k-1} + K_{k} \tilde{y}_{k} \\ P_{k|k} &= (I - K_{k} H_{k}) P_{k|k-1} \end{split}$$

Onde K_k é o ganho do filtro, P_k é a covariância da estimativa, S_k é a covariância do resíduo e H_k é o Jacobiano de $h(X_{k|k-1})$.

III. EFEITOS DA TEMPERATURA

Os sensores MEMS, como a maioria dos dispositivos eletromecânicos, sofrem alteração de suas características com a variação da temperatura. Esta variação reflete no modelo alterando os valores dos parâmetros. As versões mais novas da UMI 3DM-G já têm incorporado uma compensação desse efeito. A Fig. 2 mostra gráficos do fator de escala e do *bias* do acelerômetro em função da temperatura, para a UMI 3DM-GX1, a versão moderna da UMI 3DM-G.

Fig. 2 – Gráficos de variação do fator de escala e bias em função da temperatura para os três acelerômetros de uma UMI 3DM-GX1.

Como o procedimento de alinhamento da mesa e coleta das 50 medidas demanda cerca de 40 segundos, a tomada de todos os 20.000 dados leva cerca de 5 horas, de modo que é natural que haja variação de algumas unidades de graus centígrados na temperatura no decorrer do processo e, conseqüentemente, variação do valor dos parâmetros dos sensores ao longo do tempo. A variação da temperatura medida no sensor interno da UMI e suas conseqüências, então, devem ser avaliadas.

No caso de utilização de filtro de Kalman para estimar os parâmetros, esta variação no valor dos parâmetros é modela-

da como parte do ruído do sistema, *w*, sendo possível identificar, nos gráficos, essa variação nos parâmetros estimados em função da variação da temperatura.

Como forma de se desprezar este efeito da temperatura e encontrar simplesmente uma estimativa ótima dos parâmetros para o conjunto total das 14.900 medidas válidas, os dados foram sorteados segundo uma distribuição uniforme, antes de serem aplicados ao filtro. Comparando-se as duas formas de aplicação dos dados ao filtro de Kalman (com e sem sorteio dos dados), é possível ter uma idéia do efeito da variação de temperatura nos valores dos parâmetros, como é visto nos resultados experimentais.

IV. SIMULAÇÕES

Para possibilitar os testes dos procedimentos em simulação, foi elaborado um programa para gerar os ângulos de alinhamento da mesa (α , θ), os valores de acelerações $a_i(k)$ aplicadas aos acelerômetros e, a partir destes, os valores de tensões elétricas, $V_i(k)$, medidas em cada acelerômetro.

Os ruídos foram reproduzidos na simulação por meio da função *randn* do Matlab, multiplicada pelos valores RMS calculados. O resultado foi então somado aos valores $V_i(k)$.

TABELA I – VALORES DOS PARÂMETROS DOS ACELERÔMETROS, UTILIZADOS EM SIMULAÇÃO.

UTILIZADOS EM SIMULAÇÃO.						
i	S	S_2	S_3	$\gamma(^{\circ})$	$\beta(^{\circ})$	δ
1	800	0.3	0.2	125	30	70
2	810	0,2	0,1	-125	30	50
3	790	0,1	0	0	-135	30

Os valores reais dos parâmetros utilizados nas simulações estão apresentados na Tabela I, enquanto que os valores iniciais necessários aos algoritmos estão na Tabela II.

TABELA II– VALORES INICIAIS UTILIZADOS NOS ALGORITMOS							
	i	S	S_2	S_3	$\gamma(^{\circ})$	$\beta(^{\circ})$	δ
	1	800	0,1	0,1	135	45	40
	2	800	0,1	0,1	-135	45	40
	3	800	0,1	0,1	0	-135	40

O valor inicial da matriz de covariância, P_{k} , necessário ao filtro de Kalman, foi escolhido de modo a estar na mesma ordem de grandeza dos erros das estimativas iniciais da Tabela II. Assim

$$P_{0} = diag\left(\left[5 \quad 5^{\circ} \quad 5^{\circ} \quad 5 \quad 1 \quad 1\right]\right)^{2}$$
(19)

Já as matrizes de covariância dos ruídos de medição, R, e do sistema, Q, foram escolhidas de modo a ficarem acima dos ruídos medidos dos acelerômetros e do suposto ruído do modelo. Deste modo

$$R = diag \left(\begin{bmatrix} 40 & 40 & 40 \end{bmatrix} \right)^{2}$$

$$Q = \left(diag \left(\begin{bmatrix} 1 & 1^{\circ} & 1^{\circ} & 1 & 0, 1 & 0, 1 \end{bmatrix} \right) \times 10^{-8} \right)^{2}$$
(20)

A Tabela III apresenta o resultado da simulação da calibração pelo método de mínimos quadráticos. Observa-se que os erros dos ângulos de desalinhamento são menores que 0,5' (meio arco de minuto). A simulação foi realizada com todos os 14.900 dados, entretanto, requereu alteração no parâmetro *options.TolFun* da função *fminunc*, para 1×10^{-3} , caso contrário, a simulação encerrava atingindo o número máximo de iterações sem encontrar um ponto de mínimo. Para avaliar a qualidade dos parâmetros resultantes foi analisado o valor da função-custo. Para o acelerômetro 1, no ponto de mínimo, $J(S,S_2,S_3,\delta,\gamma,\beta)=1,4989\times10^7$, que dividido pelo número de amostras, N=14.900, e retirada a raiz quadrada, resulta no valor RMS do erro da função calculada com os parâmetros estimados.

$$ERRO_{RMS}(J) = \sqrt{\frac{J}{N}} = 31,72$$
(21)

Percebe-se que este valor é bem próximo de 32,12rms, que é a amplitude RMS do ruído do acelerômetro 1, já que não foi adicionado nenhum outro ruído ou imperfeição ao modelo.

 $TABELA \ III-RESULTADO DA SIMULAÇÃO COM MÍNIMOS QUADRÁTICOS.$

		Acel. 1	Acel. 2	Acel. 3
S	Valor	800,1424	810,0821	789,8915
	Erro	0,1424	0,0821	-0,1085
S_2	Valor	0,2922	0,2086	0,1050
	Erro	-0,0078	0,0086	0,0050
<i>S</i> ₃	Valor	0,1996	0,0991	-0,0027
	Erro	-0,0004	-0,0009	-0,0027
γ(°)	Valor	124,9890	-125,0080	-0,0007
	Erro	-0,0110	0,0080	-0,0007
β(°)	Valor	29,9945	29,9937	-135,0062
	Erro	-0,0055	-0,0063	0,0062
δ	Valor	69,9911	49,1753	29,6920
	Erro	-0,0089	-0,8247	0,3080

A Tabela IV, por sua vez, apresenta o resultado da simulação com filtro de Kalman. Os resultados são equiparáveis aos da Tabela III, porém a simulação demorava cerca de 1/3 do tempo da simulação por mínimos quadráticos. A Fig. 3 apresenta graficamente a evolução dessa simulação para o acelerômetro 1. Destes gráficos percebe-se que os ângulos de desalinhamento convergem rapidamente para os valores reais (menos de 100 iterações), enquanto que o bias, δ , é o parâmetro que mais demora a se aproximar-se dos valores reais (cerca de 6.000 iterações). Para os demais acelerômetros os resultados são semelhantes.

TABELA IV – RESULTADO DA SIMULAÇÃO COM FILTRO DE KALMAN.

		Acel. 1	Acel. 2	Acel. 3
S	Valor	800.1673	809.9583	790.4970
	Erro	0,1673	-0,0417	-0,4970
S_2	Valor	0.3069	0.1929	0.0963
	Erro	0,0069	-0,0071	0,0963
<i>S</i> ₃	Valor	0.1978	0.1021	-0.0106
	Erro	-0,0022	0,0021	-0,0106
γ(°)	Valor	125.0102	-124.9951	0.0007
	Erro	0,0102	0,0049	0.0007
β(°)	Valor	29.9915	29.9960	-134.9970
	Erro	-0,0085	0,0040	0,0030
δ	Valor	69.4183	50.6722	30.4156
	Erro	-0,5817	0,6722	0,4156

Para avaliar a qualidade dos parâmetros resultantes deste procedimento, foi calculado o desvio padrão do valor do erro da estimativa calculado no algoritmo ($\tilde{y}_k = Z_k - h(\hat{x}_{k|k-1})$), para as últimas 5.000 iterações. Para o acelerômetro 1 resultou em

$$ERRO_{RMS}(\tilde{y}_{k}) = \sqrt{\sum_{k=9.900}^{14.900} \tilde{y}_{k} / 5.000} = 32,13$$
(22)

Este erro aproxima-se do ruído adicionado às medidas do acelerômetro, 32,12rms. Neste caso, não foi adicionado ruído adicional do modelo/sistema. Nos resultados experimentais é de se esperar um adicional a este ruído, principalmente relativo à variação dos parâmetros em função da temperatura.

Fig. 3 - Gráficos da simulação do filtro de Kalman para o acelerômetro 1.

V. RESULTADOS EXPERIMENTAIS

A calibração a partir dos dados experimentais foi realizada nas mesmas condições iniciais das simulações. Utilizando os dados no formato *bits* sorteados, foram obtidos os resultados da Tabela V. Percebe-se que os parâmetros estimados pelos dois métodos estão bem próximos, especialmente dos ângulos de desalinhamento. A partir dos valores das funções de minimização foram calculados os erros RMS, conforme (21), obtendo-se 42,62rms, 45,18rms, 43,17rms, para os acelerômetros 1, 2 e 3, respectivamente. Também foram calculados os erros RMS a partir dos valores de \tilde{y} , conforme (22), e resultando em 43,35rms, 45,81rms, 43,46rms, respectivamente.

TABELA V – RESULTADOS EXPERIMENTAIS DA CALIBRAÇÃO DOS ACEL ERÔMETROS A PARTIR DOS DADOS NO FORMATO BITS

ACLEEROMETROS A LARTIR DOS DADOS NO LORMATO BIIS.					
		Acel. 1	Acel. 2	Acel. 3	
S	Kalman	834, 6055	834, 6454	832, 8262	
	Min. Quad.	834.2660	834,5660	832.9729	
S_2	Kalman	0,2679	-0,0560	-0,2634	
	Min. Quad.	0.2488	-0.0595	-0.2838	
<i>S</i> ₃	Kalman	-0,0174	-0.0161	0.0137	
	Min. Quad.	-0.0134	-0.0149	0.0110	
γ(°)	Kalman	125,2376	-125,4852	0,2112	
	Min. Quad.	125.2428	-125.4792	0.2113	
β(°)	Kalman	29,6233	29,5383	-134,4447	
	Min. Quad.	29.6210	29.5315	-134.4479	
δ	Kalman	35.009566	85.2746	85.7467	
	Min. Ouad.	36.1923	86.2298	86.9729	

A Fig. 4 mostra a evolução da estimação dos parâmetros do acelerômetro 2 utilizando filtro de Kalman, com os dados sorteados, apresentando resultado semelhante ao observada na simulação.

Fig. 4 - Gráfico da estimação dos parâmetros do acelerômetro 2, utilizando filtro de Kalman, com os dados sorteados.

A. Efeito da Temperatura

A Fig. 5 apresenta a evolução da temperatura interna da UMI ao longo do experimento, donde percebe-se uma variação de até 3°C ao longo do tempo. Portanto, é de se esperar que haja uma variação no valor dos parâmetros estimados ao longo do processo. A Fig. 6 apresenta graficamente a evolução das estimativas dos parâmetros do acelerômetro 3 ao longo do experimento, obtidos com os dados na ordem em que foram coletados. Observa-se que, no trecho a partir da amostra 9.000, quando a estimativa dos parâmetros já deve ter convergido e a temperatura passa por uma suave variação de 27°C até 27,5°C, os parâmetros apresentam também uma leve variação semelhante à temperatura, indicando haver uma correlação entre eles.

TABELA VI- Coeficientes de correlação entre os parâmetros estimados

Fig. 5 – Gráfico da evolução da temperatura (°C) ao longo do experimento.

Visando à confirmação desta hipótese, calculou-se o coeficiente de correlação entre a temperatura e a estimativa dos parâmetros para as amostras de 9.000 a 14.000, utilizando a função *corrcoef* do Matlab, pegando-se apenas o elemento da primeira linha e segunda coluna para analisar o nível de correlação. Assim, quanto mais próximo é seu módulo da unidade, mais forte é a correlação entre a temperatura e o parâmetro analisado. Os resultados obtidos estão apresentados na Tabela VI. Percebe-se que a maior parte dos coeficientes de correlação têm módulo maior que 0,5, demonstrando que os respectivos parâmetros dos acelerômetros apresentam correlação com a temperatura, conforme já se percebia comparando os gráficos das Fig. 5 e 6.

Fig. 6 – Gráfico da estimação dos parâmetros do acelerômetro 3, utilizando filtro de Kalman, com os dados ordenados.

VI. CONCLUSÃO

A utilização de Filtro de Kalman Estendido na estimação dos parâmetros de acelerômetros, apresenta vantagens em relação ao método dos mínimos quadráticos utilizado em [3], não só por ser um algoritmo mais rápido, mas também por possibilitar avaliar a variação dos parâmetros com a temperatura, ao longo do tempo, efeito que exerce bastante influência nas medições de acelerômetros de estado sólido, devendo, portanto, ser considerado no modelo.

É possível simplificar o modelo do acelerômetro, eliminando-se termos de deriva cruzada, sem que se perca qualidade do modelo, já que os ângulos de desalinhamento dos sensores já incorporam estes efeitos.

REFERÊNCIAS

[1] _____, *IEEE Standard Specification Format Guide and Test Procedure for Linear, Single Axis, Pendulous, Analog Torque to Balance Accelerometers, IEEE Std337 1972.*

[2] Sciavicco, L., and Siciliano, B., *Modelling and Control of Robot Manipulator*, 2nd Ed. London: Springuer, 2002.

[3] Renk, Erin L., Collins, W., Rizzo, M., Lee, F. and Dennis S. Bernstein, "Calibrating a Triaxial Accelerometer-Magnetometer - Using Robotic Actuation for Sensor Reorientation During Data Collection", in IEEE Control System Magazine, vol. 25, pp. 86-95, Dc. 2005.

[4] MicroStraim Inc. 3DMG User Manual. Ver. 1. 2003.

[5] Sodré, Ulysses, "Método de Tartaglia para obter raízes de equação do 3°. grau.", Disponível em: http://pessoal.sercomtel.com.br/matematica/medio/polinom/ta rtaglia.htm. Visitado em 19/08/2008.

[6] Wikiped, "Kalman filter", Disponível em: http://en.wikipedia.org/wiki/Kalman_filter. Visitado em 29/08/2008.