
GPS-aided inertial navigation performance 

evaluation using the Extended Kalman Filter 
 

Carvalho, F. M. R.*; Bruno, M. G. S.*; Carvalho, R. T** 
* ITA – Instituto Tecnológico de Aeronáutica – Praça Marechal Eduardo Gomes, 50 - Vila das Acácias, CEP 12.228-900 - São José dos Campos – SP – Brasil 

** IEAv – Instituto de Estudos Avançados – Rodovia dos Tamoios, km 5,5 – Putim, Cep - 12.228-840 - São Jose dos Campos – SP – Brasil 
 
   Abstract   We discuss the performance of a GPS-aided 

inertial navigation system that employs the Extended Kalman 

Filter (EKF) and GPS position measurements for estimating and 

correcting position errors on the inertial navigation system 

readings. A proper error model to account for position, velocity 

and attitude errors is described and validate. It also estimates 

the bias drift of both accelerometers and gyrometers, and GPS 

clock bias. Results on the EKF performance are presented for 

different flight trajectories.  
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I. INTRODUCTION 

 

   Strap-down inertial navigation systems (INS) have a set of 

tri-axes mutually orthogonal accelerometers. Their axes are 

usually aligned to a similar set of gyrometers, all assembled 

to the vehicle body. Measurements of acceleration in this 

vehicle reference frame can be computed at the Lab reference 

frame by axes rotation transforms using their relative angular 

data provided by the integration of the gyro signals. A 

sequence of double integration on the lab-referred 

accelerations can finally produce vehicle position in this 

frame. The INS position estimate is susceptible to errors 

which may grow in time, due to the successive integrations 

performed on sensor signals showing bias drift and noise. 

Contributions to the position error variance, due to gyro bias 

drift, may grow proportional to ��, since that goes through 

three successive integrations, whereas contributions from 

accelerometer error variance may grow proportional to ��. So 

a very precise set of gyros and accelerometers are necessary 

for long flights if the navigation is solely based on the INS 

system. An alternative method for estimating position is the 

Global Positioning System (GPS). The different sources of 

GPS position errors are well-known, and their statistical 

properties are well-modeled in the literature [1]-[2]. In 

contrast to INS errors, GPS errors have predictable statistical 

properties in time (even though minor error contributions due 

to varying atmosphere travel time and multipath induced 

errors are intrinsically environment sensitive). In this sense, 

INS and GPS measurements have a complementary nature, so 

GPS estimates may be used from time to time to reset INS 

accumulated position errors. Stochastic estimators, such as 

those based on the Kalman filter, can be successfully 

implemented if a good navigation error model is derived, and 

if the INS and GPS error statistical properties are properly 

described and quantified.  

   For the INS, a linear time-varying error model can be 

derived from the navigation equations by differentiation. The 

state variables in that model are the errors on position, 

velocity and attitude angles, plus INS and GPS sensor biases.  
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However, GPS data are related to position errors by a non-

linear model, which leads to an Extended Kalman Filter 

(EKF) implementation. Adding GPS own error sources to the 

model completes a set of equations to be the EKF basis. Fig.1 

shows such system: inertial sensors feed the flight computer, 

which calculates the vehicle position [� � ℎ]
�� through the 

navigation equations, where �, � and ℎ are respectively the 

vehicle latitude, longitude and height above ground. The EKF 

filter takes on that data to run an error model that estimates 

the error state vector, and adds the GPS measurements to 

update that estimation, taking into account the assumed 

statistical properties of both INS and GPS errors for the 

covariance matrix update. Its output can correct the previous [� � ℎ]
�� data. 

 

 
Fig. 1: Diagram showing the blocks for GPS-aided INS navigation. 

 

   Due to its potential to enhance navigation position 

estimation, such approach and its alternatives have been of 

great interest [3]-[4], in different topologies. The EKF 

performance though has to be evaluated on different levels of 

sensor accuracy and on different trajectories with their own 

peculiarities. In this work, we report on the error model and 

focus on the EKF performance for such GPS-aided 

navigation implementation. A complete account of INS 

errors, including bias errors in both gyro and accelerometer 

measurements, are considered, as well as the GPS intrinsic 

errors. The error model is described and validated. The 

results are finally presented and discussed.  

 

 II. ERROR MODELING AND VALIDATION 

 

   Fig. 2 shows the reference frames of interest. Here we use 

the notation largely employed in the literature on the 

variables for navigation model [3].  The vector variables 

taken in the vehicle reference frame will have a b index, 

where the vehicle axes are usually named roll, pitch and yaw 

axes, and uses the index R, P and Y respectively. Also is 

shown the ECEF reference frame (that uses the index e), 

positioned at Earth´s center and rotating with Earth at Ω�  

rate. The Lab frame is where position is computed. Usually a 

Lab fixed on Earth´s surface is a common pick. However 

computations on gravity vectors and transformations are 

more elaborate there than it is if primarily we choose a NED 

reference system as an intermediary reference frame. Later a 

final transformation can lead to the position in the Lab frame 



of choice. NED is a North-East-Down frame centered at a 

point on the WGS-84 ellipsoid, which represents Earth´s 

surface. That point is a projection of the vehicle center of 

mass on the ellipsoid, so this frame is moving with the 

vehicle. The index n denotes a NED variable, and N, E and D 

are the indices for its components. 
 

 
Fig.2: Reference frames used in the navigation problem. 

 

   The usefulness of this NED choice is first due to the fact 

that the computed velocity vector  �� = [�� ��  ��]� is easily 

related to the general position vector � = [� � ℎ]�, our 

primary interest. Here h is the height from the ellipsoid 

surface. Secondly, the gravity vector �� = [0 0 �(ℎ)]�   is 

easily represented. The navigation equation for the NED is  
 

               
���� = !"#�. %" + �� − (Ω(�� + #Ω)(� )��  (1) 

 

where %" = [*+  *,  *-]� has the specific forces measured by 

the vehicle accelerometers, and !"#� is an orthonormal 3x3 

rotation matrix from the vehicle RPY frame to the NED 

frame. It is the solution of the differential equation  
 

                     !"#�. = !"#� . /)"" − (/)(� + /(�� ).   (2) 
 

Here the gyro skew-symmetric 3x3 matrix /)""   is derived 

from the rotation rate measurement vector 0)"" =[1+ 1, 1-]�. The skew-symmetric matrices /)(�  and /(��  are 

derived respectively from the vectors 
 

                 0)(� = [Ω� cos (�) 0 −Ω� sin (�)]�  (3) 
 

                   0(�� = 6 78(+9:;) <7=(+>:;) <78 ?@A (B)(+9:;) C�
.  (4) 

 

   The first vector 0)(�  reflects the Earth´s rotation rate Ω� 

component at latitude �, and the second 0(��  accounts for the 

movement of the vehicle projection point on the WGS-84 

surface, and it is a function of  
 

                           DB = EFGF(EFHIJ (B)F:GFJKA (B)F)L/F   (5) 

and 

                          DN = EF(EFHIJ (B)F:GFJKA (B)F)O/F   (6) 

 

They are latitude-dependent curvature parameters of the 

WGS-84 ellipsoid. Its major and minor semi-axes are * ≅ 6378.1 km and X ≅ 6356.8 km. Now we may proceed 

to determine the model for navigation errors derived from the 

differentiation of (1). Let Z be a 17x1 error vector defined by 
 

                      Z = [\� \�� ]� \"%"  \"0"  \^_`a�
  (7) 

 

where the vectors inside are as follows: \� = [b� b� bℎ]� 

has the position errors to be estimated and subtracted from 

the actual INS measurement; \�� = [b��  b��  b��]� has the 

velocity errors; ]� = [c�  c�  c�]� has the attitude errors, where ]� is the vector related to a skew-symmetric matrix h�, representing a small axes rotation on the calculated !"#� 

from its actual value !"#�iiiiii, due to gyro errors 

 

                               !"#� − !"#�iiiiii = h�. !"#�iiiiii  (8) 

 

We complete Z with  \"%" = [bX*+  bX*,  bX*-]� and \"0" = [bX1+  bX1, bX1-]�, the accelerometer and gyro 

bias drift errors, both modeled as 1
st
 order Markov processes 

(\"%"  shown below, \"0" has similar form and parameters) 

 

                             \"%". = −j%<k . \"%" + l%           (9) 

 

where  j%<k = m
Onop 0 00 Onoq 00 0 Onor

s  and  l% = tuE+uE,uE-v. 

 

 uE+ , uE,  *wx uE- are zero mean Gaussian noises |(0, σ~@� ),and  �E+ , �E, , �E-  are parameters which define if the sensor 

bias is more Gaussian noise in nature or more Brownian-like. 

Higher values for them will lead to the second case, whereas 

lower values will lead to the first one. This accounts for 

different sensor technologies. For example, medium grade 

fiber-optic gyros show typically a more Brownian bias 

nature, and accelerometers a more Gaussian bias. Finally, \^_` = [b�� ��] has the receiver clock bias b��. It has to be 

accounted for making better use of GPS updates. A classical 

clock bias model [1] based on the phase noise 1� and clock 

frequency noise 1� is  

 

                       �b��.��. � = 60 10 0C . �b���� � + 61�1� C                   (10) 

 

   In fact, b�� is often obtained from satellite-vehicle distance 

equations, because GPS does not use three but four satellites 

for that, which yields four equations for four unknowns: three 

position variables, x, y and z, in the ECEF frame, and b��. 

Defining ]^_` = [c� c� c� c�]� the actual vector measured 

by the GPS, and c�  the pseudo-distance variables, we have  

 c� = �(� − ��)� + (� − ��)� + (� − ��)� + �. b�� + �� ,   
      � = 1,2,3,4    (11) 

 

   Here �� = |(0, σ��� ) are the noise resulting from the 

contributions of all noise effects that can be modeled as 

Gaussian noise on the regular GPS measurement: error in the 

broadcast ephemeris data, multipath error, clock bias of 

satellite clock, atmospheric delay fluctuations (ionosphere 

and troposphere) and the larger contributor, the deliberate 

corruption of the satellite signals under the policy of selective 

availability (SA). Separate estimates of position error 

standard deviation due to those different effects are known 

[2,3]. By adding them all results in a total standard deviation 

of about 30 meters on x, y, z measurements. Typical values of 

the standard deviation ��� are from 2 to 8 times smaller for 

the pseudo-distance c�   measurements, depending on satellite 

positions and line-of-sight to the vehicle [4]. Since ECEF 

position [� � �]� are related to [� � ℎ]� by 



� = � EF�EF���F(B):GF���F(B) + ℎ� . cos(�) . cos(�)  � = � EF�EF���F(B):GF���F(B) + ℎ� . cos(�) . sin(�)  

            � = � GF�EF���F(B):GF���F(B) + ℎ� . cos(�) . cos(�),  (12) 

 

we can express the pseudo-distance c� as a function of [� � ℎ]� via (11), which gives us a non-linear relationship 

between the GPS data and the position variables. This can be 

linearized by the standard procedure on the EKF using 

Jacobian, so that ]^_` becomes a linear function of the 

unknown state vector Z, used for the update part of the EKF: 

 

                                 � = ]^_` ≅ �. Z + �.  (13) 

 � is a 4x17 matrix and � = [�� �� �� ��]� is the GPS 

Gaussian noise vector as in (11). 

   By differentiation of (1) with respect to all relevant 

variables �, �, ℎ, �� , �� , �� , and attitude angle deviations c� , c� , c�, one get to an error dynamic model for the 17x1 

state vector Z = [\� \�� ]� \"%"  \"0"  \^_`a�
:  

 

                                  Z. = �(�). Z +  (�)  (14) 

 

where � is a 17x17 time-variant matrix whose elements are 

functions of �, �, and  ℎ, �� , ��  and  �� , Earth rotation rate Ω� , gravity �(ℎ), curvature parameters DB and  DN, the !"#� 

components, the gyro and accelerometer data, and also the � 

bias parameters of (9). � can be expressed in terms of sub-

matrices ¡, ¢ and  £ (here ∅  is a matrix full of zeros) : 

 

                                �(�) = �[¡]¥¦¥ [¢]¥¦§[∅]§¦¥ [£]§¦§�  (15) 

 

   Expressions for elements of ¡ are found in [3]. ¢ and  £ are 

 

                       ¢ = ¨ [∅]©¦© [∅]©¦© [∅]©¦#!"#�. ª% [∅]©¦© [∅]©¦#[∅]©¦© !"#�. ª� [∅]©¦#« 

 

                           £ = ¬
®−j%<k [∅]©¦© [∅]©¦#[∅]©¦© −j�<k [∅]©¦#[∅]#¦© [∅]#¦© 60 10 0C°̄°±   (16) 

 

where ª% and ª� are close-to-identity matrices to represent 

the eventual small angular axes misalignment with respect to 

the desired mutually orthogonal set-up, respectively, of the 

three accelerometers and the three gyros sets.  (�) is a 17x1 

vector of Gaussian zero-mean noises given by 

 

               (�) = 6[∅]k¦© [∅]k¦© [∅]k¦© l% l� [1� 1�aC�
 (17) 

 

   Equations (13) and (14) are the basis for the EKF filter to 

be used in its discrete linearized form: 

   State vector ¦²³/³ estimation: 

 ¦²³/³<k = ´³<k. ¦²³<k/³<k 

 

                ¦²³/³ =  ¦²³/³<k + µ³. ¶�³ − �³. ¦²³/³<k·  (18) 

   Covariance matrix ¸³/³ estimation: 

 ¸³/³<k = ´³<k. ¸³<k/³<k. ´³<k£ + ¹³<k 

 

                        ¸³/³ = (º − µ³. �³). ¸³/³<k  (19) 

 

   Kalman gain µ³: 

 

              µ³ = ¸³/³<k. �³£. ¶�³. ¸³/³<k. �³£ + !³·<k
  (20) 

 

   The index k is at time ». b�, where b� is the time step at 

each iteration. �³ comes from GPS data, ¹³ is a diagonal 

17x17 matrix containing the variances of the elements in 

vector   associated to Z, and  !³ is the 4x4 diagonal matrix 

containing the variances of ��, associated to GPS errors. In 

the above equations, ´³ is the value of the matrix               º + b�. �(». b�), which comes from Euler linearization of 

(14). There are however more elaborated alternative methods 

to obtain the discrete representation of (14), at higher 

processing cost, which is not reported here. 

 

III. VALIDATION  OF  THE ERROR MODEL 

 

   In order to proceed on EKF performance evaluation, one 

have first to test how accurate the error model is, since it 

drives the EKF estimation. This is accomplished by the 

scheme shown in Fig. 3. 

 

 
Fig.3: Block diagram to test model accuracy. 

 

Here the diagram corresponds to a simulation carried on the 

Matlab/Simulink software environment. First, a trajectory is 

selected, and based on that, values of  [*+  *,  *-]� and [1+  1, 1-]� are generated each iteration step. These are 

assumed to be the measurements made by the ideal sensors.   

A separate bias generator, in accordance to (9), and based on 

actual sensor statistical properties, outputs the bias to be 

added up to the ideal data, and produces a second set of 

acceleration and rotation rates, now simulating the actual 

sensor samples. These two data sets, the ideal and the actual 

one then feeds a navigation model, based on (1) and (2). 

Computation yields the ideal position [� � ℎ]�, and also what 

the real sensors would indicate, here called [� � ℎ]
��� . For 

evaluation purposes, the unknown ideal position serves to see 

how well the filter tracks position. The difference [b� b� bℎ]� = [� � ℎ]
��� − [� � ℎ]� is the ideal position 

error, and should be compared to the independently generated [b� b� bℎ]¼�½¾¿� , based on (14) through (17). A condition is 

that the used seeds for the pseudo-random noise signals 

should be the same on the model and in the bias generator, 

done in Fig.3 by the switch to the left. Later, in the EKF 

performance tests, the seeds are of course not the same, and 



the switch is turned right. Such arrangement is similar for 

velocities and attitude angles as well. Just for the sake of 

generality, let x be any one of those nine variables. A 

measure of how well the error model corresponds to reality in 

the simulation is evaluated by the figure of merit Δ�, in dB, 

which is a normalized RMS deviation between the ideal error b� and the model estimated error b�Á : 

 

               Δ�(xÂ) = 10. log�Å ÆÇ OÈÉÊËÉÌÍ Î ¶ÏÐÁ ËÏÐ·F ÑÉÉÊÉÌ
Ç OÈÉÊËÉÌÍ Î (ÏÐ)F ÑÉÉÊÉÌ

Ò  (21) 

 

   Tests were run for different trajectories and initial 

conditions. For example, for trajectory 4, explained later, the 

results are shown in the Table below, where the agreement is 

so that the deviation is around 0.1% in the worst cases. There 

the integral is performed between a time interval 

corresponding to 40000 steps. However, in some trajectories, 

where the variable is to assume very small values, such a 

trajectory tangent to the ellipsoid (ℎ = 0 all times), or else in 

trajectories where frame transforms have singularities, such 

in crossing of Earth´s poles, for longitude �, the model may 

exhibit higher discrepancies. Also, for a huge number of time 

steps linearization may accumulate computational errors. 

 
TABLE 1 - SAMPLES OF MODEL VALIDATION FIGURES Δλ (dB) -40 Δh (dB) -45 ∆vE (dB) -28 Δφ (dB) -29 ∆vN (dB) -38 ∆vD (dB) -42 

 

IV. FILTER IMPLEMENTATION 

 

 
Fig.4: Block diagram for filter implementation and test 

 

   Fig. 4 shows the basic diagram for implementation of the 

EKF performance tests. There we implement a satellite 

position (�� , �� , ��) algorithm to output the 24 satellite 

positions and also choose the four best satellites with respect 

to line-of-sight to the vehicle at every time step. The satellites 

are displaced at six orbital planes, equally spaced in roughly 

circular orbits, running at orbital radius of about 26560 km. 

Orbital time is around 11.967 hours. The actual GPS pseudo-

distance data �³ is generated by picking the ideal position [� � ℎ]� of Fig. 3, plus the signal degradation caused by 

clock bias drift and Gaussian noises, independently 

generated, and previously discussed. The EKF estimated 

error vector ¦²³/³ provides correction for the position [� � ℎ]
���  integrated from INS measurements. Since for test 

purposes we have the ideal position recorded earlier on, the 

corrected position can be compared to it, in the sense of (21), 

evaluating the deviations of filter estimations. We can also 

monitor how the figure of merit changes along the time steps. 

Since Δ� is normalized, its eventual value decay indicates 

convergence of the filter estimation as well its consistency in 

the sense discussed in [5]. And also the average value of b�Á − b� indicates how unbiased the filter implementation is. 

 

IV. RESULTS 

 

   Filter performance must be checked on different flight 

trajectories in order to account for peculiarities of each one. 

In order to accomplish that we selected four different 

trajectories among those tested as to characterize its 

estimation power. Fig. 5 shows graphically those trajectories: 

In Traj.1 the vehicle goes exactly at the ellipsoid surface (ℎ = 0 all the way), starting at � = 0° and � = 90°. In 

Traj.2 the vehicle is launched vertically from the same 

previous spot. In Traj.3 it is launched on an initially tangent 

line pointing North. And finally in Traj.4 it describes an 

irregular trajectory where non-zero rotation rates and 

accelerations combine as to simulate vehicle maneuvering. 

 

 
Fig.5: Trajectories employed in EKF evaluation. 

 

   Common to all trajectories are: time step b� = 10<� ×, gyro 

bias (all 3 gyros) have �Ø= 10� and σ~Ù� =10<Ú (corresponds 

to a bias drift of ≈ 1 deg hrÜ ); accelerometer bias (all 3 of 

them) have �E= 10<� and σ~@� =10<� (corresponds to a bias 

drift of ≈ 5 Ýg); misalignment matrices ª% and ª� are 

identity; GPS clock bias variances are typical of  

temperature-compensated crystal clocks; initial attitude is 

such that RPY vehicle axes are aligned to NED axes; and 

GPS error variance σ���  was 25 m�. Table 2 shows the initial 

conditions and the ideal acceleration and rotation rates 

employed to generate each of them. 

 
TABLE  2: DATA FOR EACH TESTED TRAJECTORY 

Initial [��  ��  ��]� 
(m/s) 

[*+ *, *-]�  Þ ×�Ü  

[1+ 1, 1-]� 
rad/s Traj. 1 [10á 0  7.89]� generated file generated file Traj. 2 [0 0 0]� [0 0 −10�]� [0 0 0]� Traj. 3 [0 0 0]� [10� 0 − 15]� [0 0 0]� Traj. 4 [100 0 − 200]� [10� 1 − 10�]� [0.1 − 0.4 0]� 

 

   Below Fig. 6 shows the EKF error estimation plot for Traj.4 

as compared to the actual error plot, for latitude �, on 1.1 × 10á time steps. Superposition of these plots in one plot 

would produce superimposed traces which would have made 

difficult to visually separate the plots. There we see that the 

estimation tracks the ideal result. This can be quantified by 

observing Fig. 7, which shows how the RMS deviation Δλ 



(dB) evolves. There each point is the normalized RMS 

deviation integrated over each 5000 time steps interval. 

 

 
Fig.6: Comparison between actual and EKF estimate of �. 

 

We see initially that it decays towards a -20 dB level. The 

filter is unbiased and average of b�Á − b� over larger intervals 

tends to zero. And 
�¶ãÊ<ãÌ· Î ¶b�Á − b�·� x�ãÊãÌ  tends to the 

variance pointed by the first diagonal element in the 

covariance matrix ¸³/³, stating filter convergence. 

 

 
 

Fig. 7: Filter convergence as represented by Δλ in dB . 
 

   Variances for velocities are consistently higher. There is 

convergence, however to higher RMS deviations. Figs. 8 and 

9 show the plots for the north velocity �� to illustrate that. 

And Table 4 summarizes the results in all four trajectories for 

position and velocity errors. It shows the average RMS 

deviation observed at a larger time interval from the 6 × 10ä 

time step to the final simulation time.  

 

 
 

Fig. 8: Comparison between actual and EKF estimate of �� . 

 
Fig. 9: Filter convergence as represented by Δ�� in dB. 

 
TABLE 3 – FILTER CONVERGENCE DATA 

  Traj.1 Traj. 2 Traj. 3 Traj. 4 Δλ (dB) -33.1 -34.5 -29.1 -19.2 Δφ (dB) -35.5 -38.0 -24.7 -27.5 Δh (dB) -6.5 -14.3 -23.0 -19.9 

∆vN (dB) -0.4 -14.8 -10.6 -2.3 

∆vE (dB) -1.4 -15.8 -5.4 -4.2 

∆vD (dB) -0.5 -9.2 -11.1 -2.5 

 

   EKF tracking performance of error curves is to be also 

verified in specific situations of the trajectories. For example, 

Fig. 10 shows EKF filter tracking of the ideal longitude error b� plot in Traj.1, when the vehicle passes through the Earth´s 

North pole. There, transformation between variables from 

NED to �, �, ℎ leads to higher errors due to singularities at 

the exact North pole spot, however the filter does keep track 

of the actual error in this situation. 

 
Fig.10: Detail of longitude filter tracking in Traj.1. 

 

IV. CONCLUSIONS 
 

   EKF filter shows consistent convergence in several 

instances in this evaluation. Overall performance shown 

herein can now be compared to other filter implementations, 

such the Unscented Kalman Filter (UKF), and particle filters. 

For velocity and attitude errors, the covariance elements are 

larger, and a DSP filter post-processing may be applied. For 

real-time implementations though care must be taken to avoid 

filter bias due to processing delays, since corrections are to 

the most up-to-date sample. Furthermore, multi-rate systems, 

where different sample times of the INS and GPS applies, or 

even when GPS update is shortly lost, needs extrapolation of 

GPS data from past samples. We think the EKF approach 

implemented is suitable to tackle those issues. 
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