
Non-Linear Addressing Scheme for a
Reconfigurable Look-Up Table

Elvio Dutra (1,2) , Weiler Finamore (3) , Leandro Indrusiak (4) , Manfred Glesner (2)
Instituto de Estudos Avançados – Divisão de Geointeligência (http://www.ieav.cta.br/geointeligencia/) (1)

Technische Universität Darmstadt – Mikroelektronische Systema (http://www.mes.tu-darmstadt.de/team/mitarbeiter.en.jsp) (2)
Pontifícia Universidade Católica do Rio de Janeiro - Centro de Estudos em Telecomunicações (http://www.cetuc.puc-rio.br) (3)

The University of York - Department of Computer Science (http://www-users.cs.york.ac.uk) (4)

ABSTRACT  Look-Up Tables (LUT) are generic

microelectronic blocks used in many different applications.

They are very useful for interpolation: a desired function is

sampled, these samples are stored, and the values in between are

interpolated using Taylor’s approximations. This paper presents

a reconfigurable LUT with a non-linear sampling scheme used

in the FPGA implementation of a Gaussian noise generator for

developing and testing telecommunications Systems, such as the

Link-BR2 protocol used for V/UHF data telecommunications

between aircrafts. We sample a given transformation function

g(x) in a non-linear pattern: whenever g(x) varies abruptly,

more sampling points are stored on the LUT. The first

advantage of this non-linear addressing scheme is to save

memory size in the LUT. By changing internal LUT parameters,

we can also apply the non-linear addressing scheme to other

transformation functions. This leads to different kind of noise

generators, maintaining the non-linear addressing scheme and

the consequent advantage of memory saving.

Keywords  Reconfigurable Look-Up Table, FPGA

implementation, Non-linear addressing.

I. INTRODUCTION

Look-Up Tables (LUT) are very common microelectronic

blocks, used at a very broad range of applications. They can
be utilized to speed up complex and slow calculations by
means of storing pre-computed values on it, allowing one to
achieve very high-speed designs [3]. They can also be used
on flexible noise generators, in which one can change the
probability density functions (pdf) of the generated noise just
changing the content stored inside the LUT [2].

The main contribution of this work is to present a generic
and versatile LUT block for microelectronic designs, using a
non-linear addressing scheme. The proposed block can be
used in a very wide range of applications and domains. It has
the advantage of storing a desired function in a very memory
saving scheme.

The proposed design also allows the reconfiguration of a
given application on the fly, storing different functions,
sampled on different non-linear schemes. This advantage can
be very useful on projects that map more than one function,
in a small memory space: only one LUT block can perform
different functions, saving silicon area.

 Élvio Carlos Dutra e Silva Júnior, elvio.dutra@ieav.cta.br, Phone +55 - 12 -
39475345, Fax +55 - 12 - 39441177; lsi@cs.york.ac.uk, Phone +44 - 1904 -
325570; glesner@mes.tu-darmstadt.de, Phone +49 - 6151 - 164537;
weiler@cetuc.puc-rio.br, Phone +55 - 21 - 35271148.
 This work was financed by the Brazilian Aeronautics Command
(COMAER), through the Portaria R-126/GC1, and by the Technische
Universität Darmstadt (TUD), through the Microelectronic Systems Institute.

The reconfigurable LUT proposed on this work was
applied as the interpolation unit of a Gaussian noise generator
used for test and design of telecommunication systems such
as the Link-BR2 protocol, designed by EMBRAER
(http://www.embraer.com/) under the coordination of
CISCEA (http://www.ciscea.gov.br/) and technical supervisi-
on of IEAv (http://www.ieav.cta.br/). This protocol was
designed to be the backbone of an airborne V/UHF data
telecommunications system.

The remaining of the paper is organized as follows:
Section II describes the LUT structure, the interpolation
function domain and the approximation scheme used. Section
III presents the external configuration table that configures
the LUT parameters in order to correctly address and sample
differently functions; this section also shows the
transformation function g(x) used in the reconfigurable LUT
of our study case: a Gaussian noise generator. Section IV
selects which order of Taylor’s approximation was used in
the selected study case. Section V presents the FPGA
implementation of the reconfigurable LUT using Xilinx
System Generator, detailing the proposed non-linear
addressing scheme designed to limit the maximum error
produced by the LUT around the poles of the transformation
function. This section also improves the efficiency by using
half secant approximations. Section VI shows the flexibility
of this design using the reconfigurable LUT in the
interpolation of two different functions, using different
sampling schemes. Section VII closes this article with a
summary of the achieved results and a flavour of future
works.

II. LUT STRUCTURE

The LUT designed on this article maps an input x to a

desired output g(x). The input x is a fixed point, signed, two’s
complement, 15 bits wide with binary point position equal to
14. Therefore x varies from -1.00000000000000 to
+0.99993896484375. The LUT can be used in g(x) functions
with for differently wide its domains. For example, in the
case of a domain (-C,+D), where D > C, we just have to scale
the input from the interval (-D,+D) to (-1,+1), and neglect the
values on the interval (-D,-C).

The LUT stores on RAM blocks two values pre-
calculated: the ordinate g(x) itself and its derivate g’(x). For
an input x, it interpolates g(x) using the Taylor’s
approximation (1):

()∑
∞

=

−=
0

00
')(

!

1
)(

j

jj xxxg
j

xg (1)

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

Since the values stored inside the RAM blocks are non-
uniformly spaced, it is not possible to simply slice some most
significant bits (MSB) of x for calculating the RAM
addresses as usually done on LUT interpolation. In our case,
it is necessary to determine which segment of the RAM is
related to the input x according to the inferior and superior
limits in table 2, select the MSB, subtract a constant value K
given on table 2, and calculate the difference between the
input x and the biggest value smaller than it stored inside the
RAM. The block schematic of the proposed non-linear LUT
subsystem is presented on Fig. 6 at the end of this text. The
error introduced by the improved LUT is shown in Fig. 7,
still bounded by the defined limit of 2-15 for all range of input
values.

III. EXTERNAL CONFIGURATION TABLE

All configuration parameters of the LUT block; including

the content of its memories, are previously calculated and
imported to a FPGA. This design was implemented using
System Generator, on a Xilinx Spartan-3 development kit
from Avnet (XC3S2000-FG676 Spartan 3 FPGA).

The External Configuration Table has two inputs related
to the sampling scheme of the desired function g(x), as can be
seen on Table 1: the Sampling Limit Point, which defines the
boundaries of a sampling region, and the Resolution, related
to the distance between sampled points (for example, for a
resolution equal to 10, the distance between sampled points is
equal to 210). Based on this inputs, we calculate the
configuration parameters of the LUT, which are given on
table 2 at the end of this text.

TABLE 1 – EXTERNAL CONFIGURATION TABLE (INPUT VALUES)
Region Sampling Limit Point Resolution

1 -1,00000000000000 15
2 -0,99770000000000 14
3 -0,99540000000000 13
4 -0,99030000000000 12
5 -0,98050000000000 11
6 -0,95900000000000 10
7 -0,91410000000000 9
8 -0,82040000000000 8
9 -0,64070000000000 7

10 -0,34380000000000 6
11 -0,12510000000000 5
12 0,00000000000000 5
13 0,12490000000000 6
14 0,34360000000000 7
15 0,64050000000000 8
16 0,82020000000000 9
17 0,91400000000000 10
18 0,95890000000000 11
19 0,98040000000000 12
20 0,99010000000000 13
21 0,99530000000000 14
22 0,99760000000000 15
23 0,99993896484375 15

In our study case, the non-linear LUT is used on a flexible

noise generator to interpolate a transformation functions g(x)
responsible for changing the pdf of a source uniformly
distributed noise into a signal with a desired pdf (in our case,

into a Gaussian distributed noise). By changing the
transformation function of a noise generator, we can generate
different distributed noise signals. The source uniformly
distributed noise can be implemented on a wide gamma of
ways [9, 10], both digital (e.g. pseudo-random number
generators) and analog. The uniformly distributed noise
generator used in our case studies was published on [3].

The implementation of a linear LUT to interpolate a
desired transformation function g(x) is straightforward and
easily found on literate [8, 11]. Usually the function g(x) and
its derivates are linearly sampled and stored inside RAM
blocks. In this case, the addressing scheme is constructed
with the MSB (Most Significant Bits) of the input. Here, this
scheme was modified in order to compensate the very non-
linear behaviour of g(x) around its poles, and to maintain the
approximation error bounded.

As mentioned, the source input signal x in our study case
has a uniformly distributed pdf function [4], described by (2).

()









+≤≤−

=

otherwise

xfor

xf x

,0

11,
2

1

()









+≤≤−+

=

otherwise

xforx

xFx

,0

11,
2

1

2

1
 (2)

Our goal is to produce normally distributed noise, with

mean value equal to zero and variance equal to σy. This
means that the LUT’s output should result on signals with a
pdf function given by (3).

()
2

2

2

2

1
y

y

y

y eyf
σ

σπ

−

=

()



























+=

y

y

y
erfyF

σ2
1

2

1 (3)

To deduce the transformation function g(x), we use

equation 4.36 from [2] and the pdf equations above (4).

() () ⇒−=













⇒



























+= 12

22
1

2

1
yF

y
erf

y
erfyF y

yy

y
σσ

()() ()()12212
2

11
−=⇒−=⇒ −−

yFerfyyFerf
y

yyy

y

σ
σ (4)

Using the identity () ()xFyyFx yy

1−
=⇔= , it results (5):

()() () ()⇒−=⇒−=

−−− 122122 111
xerfxFyFerfy yyyy σσ (5)

() () () ()xerfxFxerfxF yyyy

1111 21
2

1
11

2

1
221

2

1 −−−−
=
















+⇒







−








+=
















+⇒ σσ

Comparing (5) with equation 4.36 from [2], give us the

desired transformation function g(x) in (6):

() ()() () () ()xerfxgxFxFFxg yyxy

111 21
2

1 −−−
=⇒








+== σ

 (6)

As can be seen in Fig. 1, the transformation function g(x)
has two poles located at x = -1 and x = +1. Both the

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

uniformly distributed input signal and the domain of g(x) go
from -1 to +1. The range of this function ideally goes from -∞
to +∞, what is expected since the output is an unlimited
normally distributed signal.

Fig. 1 - Transformation Function g(x)

IV. TAYLOR’S APPROXIMATION

The g(x) transformation function (6) deduced in the

previous section has a very strong non-linear behaviour
around its poles. Normal approaches using linear
interpolation techniques would lead to very high
approximation errors for inputs around those regions, or it
would require very big RAM for storing many linearly
spaced samples g(x0). Another approach would use a chain of
multipliers in a higher Taylor’s approximation order (7), but
this solution would require a very big implementation area (a
very long chain of multipliers and very long tables for storing
g(x0) and many order of its derivates) in order to get low error
approximations, although such approach would introduce an
unreasonable latency that would impact the overall system
performance.

()∑
∞

=

−=
0

00
')(

!

1
)(

j

jj xxxg
j

xg (7)

We face a trade-off between the interpolation error

produced by the LUT and the memory size required to
construct it. In addiction, every time we increase the order of
the Taylor’s approximation we need an extra multiplier,
which increases not only the complexity of the LUT but also
its latency. So, as we increase the order of the Taylor’s
Approximation, we have to deal with three disadvantages: (1)
larger memory required to store one more derivate order of
the transformation function; (2) increased arithmetic resource
usage and (3) increased latency due to the cascading of one
more multiplier. In the other hand, it has the advantage of
decreasing the error by approximating the transformation
function g(x) by a curve, instead of a segmented line as it
occurs in zero and first order Taylor’s Approximations.

Fig. 2 shows the transformation function (a curve ploted
wit a continuous line), its zero order Taylor’s approximation
(marked with circles), its first order (marked with x), second
order (market with crosses), third order (marked with stars),
fourth order (marked with squares), and fifth order (marked

with diamonds). Fig. 3 uses the same identification tags to
show the error obtained by each approximation order.

After analyzing the data on Table 3, we concluded that
the first order Taylor’s approximation scheme is the best
compromise between hardware costs and approximation
error. We obtain the biggest marginal improvement by
increasing from zero to first order Taylor’s approximation:
the average error decreases 11 times. This approximation
order has also the lower hardware cost: only one multiplier
and one extra LUT for the first derivate are needed.

Fig. 2 - Zero to Fifth Order Taylor’s Approximation

Fig. 3 - Zero to Fifth Order Taylor’s Approximation Error

TABLE 3 - ZERO TO FIFTH ORDER TAYLOR’S APPROXIMATION ERROR
Order Peak Error Average Error

Zero 0.27705274 1.0282369221 x 10-3

First 0.18849472 8.6443005413 x 10-5

Second 0.14720625 4.0277456890 x 10-5

Third 0.11928469 2.3411098682 x 10-5

Fourth 0.09700337 1.3598830895 x 10-5

Fifth 0.07722615 6.5296863738 x 10-6

V. LUT-BASED DESIGN

Taking into account the trade-off described in the

previous section, a LUT-based implementation of a
transformation function using first order Taylor’s
approximation scheme was realized. The LUT was designed
using Xilinx System Generator [5], which is a library of
parametrical IP cores integrated into Matlab/Simulink,
allowing for system level design entry and simulation. Fig.

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

20 at the end of this text shows the block schematic
implementation within System Generator. Its input is a
uniformly distributed noise in the range from -1 to +1 - 2-15,
due to the 15 bit input size.

Three main data paths can be seen in the schematic of
Fig. 20: The data path of memory block RAM1, which stores
the values of the transformation function g(x0); the RAM2,
which stores the values of the first derivate g’(x0); and the
third data path which uses the Slice2 block to calculate the
difference between the x0 values present at the input of the
LUT and the corresponding biggest g(x0) value smaller than it
stored inside RAM1.

Memory Size Optimization

The depth of RAM blocks on the LUT is defined

according to the maximum allowed interpolation error: the
larger the memory size, the smaller the interval between
adjacent sampling points and smaller the interpolation error.
Fig. 4 plots the error for each possible input value using
different memory sizes. The horizontal line represents a
boundary: it is desirable that the error values stay below that
limit for all possible inputs. This limit is equal to 2-15 =
3.0518 x 10-5. The input values are 15 bits long and any error
lower that 2-15 does not decrease the quality of the LUT. Note
that the error reaches its maximum for inputs near the poles.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-4

input

E
rr
o
r

Error Obtained With a 5-bits Density Memory Scheme

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-4

input

E
rr
o
r

Error Obtained With a 6-bits Density Memory Scheme

0.99 0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

-5

input

E
rr
o
r

Error Obtained With a 13-bits Density Memory Scheme

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-5

input

E
rr
o
r

Error Obtained With a 14-bits Density Memory Scheme

Fig. 4 - Error using 25, 26, 213 and 214 memory positions

In order to maintain the error below 2-15, we need to

increase the memory size, which means increasing the
density of sample points between 0 and +1. Fig. 4 shows the
error obtained in a structure with 25, 26, 213 and 214 memory
positions. As the size of the memory increases, the error
decreases and stays below the boundary limit for a larger
share of input values. On the third graph there is a zoom in
the x-axis, showing only values from 0.99 to 1, while the
other graphs show them for the entire domain (-1, +1).

The maximum error limit is respected only by using 214
memory positions (bottom graph on Fig. 4). In this case we
reach an error equal to zero for all possible inputs. In this
extreme case there is no linear interpolation, but a one-to-one
mapping of all possible input values. In such case there is no
need for a memory to store the first derivate g’(x), neither a
multiplier nor an adder are necessary for the interpolation.

At first glance, it seems that the memory size of the LUT
was found: a RAM memory with 214 = 16384 positions
eliminates completely any possible error, but this size is too
large for implementation on a FPGA. The proposed solution
uses a non-uniformly spaced memory scheme. It uses less
memory positions for input values around zero (where the
error is smaller), and more memory positions for points
around the pole (where the error is bigger), saving memory
space. This approach is described in table 2 and graphically
presented on Fig. 5. This graph depicts how the density of
sampling points increases as the input reaches the pole
region, while the table 4 details how the data stored inside
RAM1 was defined.

TABLE 4 - NON-UNIFORMLY SPACED MEMORY SCHEME.

Size Start End Inferior Superior MSB K

16 0 1 0.0000000 0.1249389 4 0
32 4 10 0.1250000 0.3436889 5 2
64 22 40 0.3437500 0.6405639 6 13
128 82 104 0.6406250 0.8202514 7 54
256 210 233 0.8203125 0.9140014 8 159
512 468 490 0.9140625 0.9589233 9 393

1024 982 1003 0.9589843 0.9804077 10 884
2048 2008 2027 0.9804687 0.9901733 11 1888
4096 4056 4076 0.9902343 0.9953002 12 3916
8192 8154 8172 0.9953613 0.9976196 13 7993

16384 16346 16383 0.9976806 1.0000000 14 16166
Size: number of memory positions; Start: lower memory position used;
End: higher memory position used; Inferior and Superior: Identifies the
limit range of the input for which the error stays below the limit of 2-15;
MSB: Number of most significant bits taken from the input signal to
construct the addresses, excepting the signal bit; K: Constant added to
MSB to construct the addresses

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Input X

F
u
n
c
ti
o
n
 g

(x
)

Fig. 5 - Function g(x) sampled according the to Table 2

The RAM blocks store the 213 memory positions defined

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

by Table 2. Since the values stored inside RAM1 and RAM2
are not uniformly spaced anymore, it is not possible to use
the MSB to address its contents. For calculating the
addresses, first it is necessary to determine which segment
includes the input value (according to inferior and superior
limits in Table 2), select the MSB, and subtract a constant
value K (6th and 7th columns of table 2). The third path
calculates the difference between the value x presented at the
input of the LUT, and the corresponding biggest g(x0) value
smaller than it stored inside RAM1 by taking the less
significant bits of the input. The block schematic of the
improved LUT subsystem is presented on Fig. 6 (at the end
of this work). The interpolation error obtained with the
improved LUT is shown in Fig. 6, bounded by the threshold
limit (2-15) for all input values.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

-5

Fig. 6 - Error obtained with non-linear addressing scheme

Secant Cross Point Choice

The LUT scheme presented in the subsection above

approximates the curve g(x) by a sequence of straight line
segments, which are secants to the curve at their extremities.
Due to the fact that the sampling points are not uniformly
spaced, it allows the minimization of the total amount of
memory used for a given error limit. One further
improvement in the organization of the memory blocks can
be achieved by changing the cross point position of these line
segments. This implies in using the same RAM1 memory
content g(x0), but decreasing the g’(x0) values stored at
RAM2.

Fig. 7 shows six different cases where the error is plotted
for different types of secant (from top to bottom: 100%, 50%,
90%, 80%, 85% and 82.5% cross point positions). The first
case (100%) shows the error produced by a full secant
scheme with the cross points at the extremities of each
segment, like the one presented on the previous subsection. In
this case (100%), the error is equal to zero at the border of
each secant, and it reaches a maximum just in the middle.
The second graph presents a secant that crosses the curve g(x)
in the middle (50%) of the distance between two sampling
points. In this case, the error is equal to zero at the beginning
of each secant and in the point that corresponds to 50% of the
distance to the next sampling point. The third graph shows
the error in the case that the secant crosses g(x) at 90% of the
distance between the sampling points; here the error becomes
bigger before the 90% crossing point. Changing the crossing
points to 80%, 85% and 82.5%, the difference between the

errors before and after the crossing point decreases, reaching
equilibrium when the crossing point is placed at 82.5%.

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-5

Input Value

A
b
s
o
u
te
 E
rr
o
r

Intersection Point at 100%

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-5

Input Value

A
b
s
o
u
te
 E
rr
o
r

Intersection Point at 50%

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-5

Input Value

A
b
s
o
u
te
 E
rr
o
r

Intersection Point at 90%

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-5

Input Value

A
b
s
o
u
te
 E
rr
o
r

Intersection Point at 80%

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-5

Input Value

A
b
s
o
u
te
 E
rr
o
r

Intersection Point at 85%

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-5

Input Value

A
b
s
o
u
te
 E
rr
o
r

Intersection Point at 82,5%

Fig. 7 - Secant and Half-Secant Approximation Scheme

Fig. 8 shows the error for all possible LUT input values

with an 82.5% half-secant. When comparing this graph with
Fig. 6, it is possible to see that the error is decreased
approximately by a factor of two. Note that this improvement
is achieved without changing the size of the RAM, only the
contents of RAM2 are changed.

Fig. 8 - Error for non-linear addressing and half-secant approximation

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

The updated LUT subsystem was validated using two
different generators for the uniformly distributed noise, one
based on a chaotic system [3] and the other on a random
number generator (RNG). Fig. 9 shows respectively, from top
to bottom, the pdf of the uniformly distributed noise
generated by the chaotic system [1], its normally distributed
noise presented at the output of the LUT structure [1], the pdf
of the uniformly distributed noise generated the RNG and its
corresponding normally distributed noise.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

500

1000

1500

2000

2500

Uniformaly Distribution on Linz and Sprott Circuit

-1.5 -1 -0.5 0 0.5 1 1.5
0

1000

2000

3000

4000

5000

6000

7000
Gaussian Distribution on Linz and Sprott Circuit

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

-1.5 -1 -0.5 0 0.5 1 1.5
0

500

1000

1500

2000

2500

3000

3500

Fig. 9 - LUT-based transformation of uniformly distributed into normally

distributed noise

VI. LUT RECONFIGURATION

The sections above presented the study case of a

reconfigurable interpolation LUT with non-linear addressing
scheme for the generation of a Gaussian noise. In this case,
the LUT was configured by table 2 (External Configuration
Table) which mapped the transformation function presented
on (6).

We can change the input values of table 1 and reconfigure
the LUT in order to sample (6) according different non-linear

addressing schemes. It can be also reconfigurable to map
other transformation functions g(x) using different non-linear
addressing schemes that suits better each function. This
flexibility can be used, for example, in the design of noise
generators that produces outputs with probability distribution
functions different from the Gaussian noise explained on the
last subsection. This reconfiguration could be archived on the
fly, with no extra hardware cost.

To illustrate this advantage, we use the proposed
reconfigurable LUT in the interpolation of two different
equations: the cubic function g(x) = x

3 (fig 10) and the
exponential function g(x) = e

x (Fig. 11). These equations
were selected as mathematical examples, and they have no
correlation with the noise generation application explained on
last section.

Fig. 10 – Cubic Function

Fig. 11 – Exponential Function

Each function was sampled according to 2 different non-

linear patterns. For them both, we calculate new values for
table 2, based on new sampling intervals and resolutions of
table 1. Note that these intervals can be symmetric to the
origin, or not.

Fig. 12 shows the error obtained after applying a first
order Taylor’s approximation to the cubic function, and Fig.
13 shows the error for the exponential function. The upper
graphs of Fig. 12 and 13 use the same sampling intervals
used on the study case presented on section V (compare to
the Fig. 6). But the lower graphs of these 2 figures use
sampling intervals different from the one used on section V,
and also different one from another. On Fig. 12, the smaller
resolution occurs in the interval (-0.6,+0.3), and in the
interval (-0.5,+0.0) on the Fig. 13.

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

Fig. 12 – Approximation Error on Cubic Function

Fig. 13 – Approximation Error on Exponential Function

VII. CONCLUSION

This paper identified a flexible approach to the design of

noise generators. It relies on transformation functions that
allow the generation of noise signals with different
probability density functions using as source a uniformly
distributed noise. A special case of transformation function
g(x) was presented, allowing the generation if Gaussian
noise. The mathematical background used to derive this
particular function was also presented. This mathematical
procedure can be used to derive transformation functions that
are able to generate noise with different probability density
functions, such as Weibull or Lognormal. The transformation
functions are implemented on Look-Up Tables within
reconfigurable logic devices, so the reconfiguration of the
noise generator involves mainly the replacement of the

contents of the Look-Up Tables.
This paper also explored specific features of

transformation functions with poles using techniques for non-
linear LUT addressing and half-secant approximation of the
transformation function, achieving insignificant interpolation
error with moderate size of memory. The final system was
implemented in a Xilinx XCV800 device, using Xilinx ISE
6.2i, as seen on Table 3

TABLE 5 – XILINX ISE 6.2I SYNTHESIS INFORMATION
Property Value

Device Part Type XCV 800
Package Type HQ 240

External GCLKIOBs 1 out of 4, or 25 %
External IOBs 49 out of 166, or 29%
BLOCKRAMs 2 out of 28, or 7%

Slices 371 out of 9408, or 3%
GCLKs 1 out of 4, or 25%

Average Connection Delay 2.016 ns
Maximum Pin Delay 7.267 ns

Clock Period Constrain 100 ns
Maximum Frequency 90.228 MHz
Power Consumption 18 mW

Junction Temperature 25 C
Typical Package Resistance 0.208 ohms
Typical Package Inductance 13.2 nH

Typical Package Capacitance 2.25 pF

The non-linear addressing scheme presented here requires

213 memory positions and bounds the error to a minimum
value. Just to compare, if a linear addressing scheme with
256 positions were used, 3.27 % of all possible LUT output
values would stay beyond the limit boundary of 2-15, and 50
outputs would produce an unacceptably high absolute error
grater than 0.01.

VIII. REFERENCES

[1] Dutra, Elvio. Analysis, Design and FPGA-Implementation of

Chaotic Systems as Alternative for Gaussian Noise Generation.
Darmstadt, Alemanha, 2004.

[2] Dutra, Élvio; Indrusiak, Leandro; Glesner, Manfred. Non-
Linear Addressing Scheme for a Lookup-Based Transformation
Function in a Reconfigurable Noise Generator. In 18th
Symposium on Integrated Circuits and Systems Design
(SBCCI), ACM, 2005.

[3] McLoone, Máire; McCanny, John. Rijndael FPGA
Implementation Utilizing Look-Up Tables. In Journal of VLSI
Signal Processing 34, 261 – 275, Kluwer Academic Publishers,
2003.

[4] Indrusiak, Leandro; Dutra, Élvio; Glesner, Manfred.
Advantages of the Linz-Sprott Weak Nonlinearity on the FPGA
Implementation of Chaotic Systems: a Comparative Analysis.
In: International Symposium on Signals, Circuits and Systems
(ISSCS), Iasi, 2005.

[5] Papoulis, Athanasios: Probability, Random Variables and
Stochastic Processes. McGraw-Hill, 1991.

[6] Xilinx Inc.: System Generator for DSP version 3.1 – Quick

[7] Start Guide, Introductory Tutorials and Reference Guid

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

[8] Gribbon, KT and Johnston, CT and Bailey, DG. A real-time
FPGA implementation of a barrel distortion correction
algorithm with bilinear interpolation. Image and Vision
Computing Journal, pages 408 - 413.

[9] Lee, D.U. and Luk, W. and Villasenor, J.D. and Cheung,
P.Y.K. A Gaussian noise generator for hardware-based
simulations. IEEE Transactions on Computers, volume 53,
number 12, pages 1523 – 1534, 2004.

[10] Addabbo, T. and Alioto, M. and Fort, A. and Rocchi, S. and
Vignoli, V. Uniform-distributed noise generator based on a
chaotic circuit. Instrumentation and Measurement Technology
Conference, 2006. IMTC 2006. Proceedings of the IEEE.

[11] Lehmann, T.M. and Gonner, C. and Spitzer, K. Survey:
Interpolation methods in medical image processing. IEEE
Transactions on Medical Imaging, volume 18, number 11,
pages 1049 – 1075. 1999.

TABLE 2 – EXTERNAL CONFIGURATION TABLE (OUTPUT VALUES)

3 5 10 15 21 25 26 34 48 49 50 51 52
Inf. Lim. Precise Sup. Lim. Corrected B D S Z S Desloc. AddLog R0si # R0sf #

-1,00000000000000 -0,99774169921875 -14 15 9 15 7 16384 0 -1,00000000000000 1 -0,99768066406250 39
-0,99768066406250 -0,99542236328125 -13 14 9 14 1 8192 19 -0,99755859375000 40 -0,99536132812500 58
-0,99536132812500 -0,99029541015625 -12 13 9 13 2 4096 38 -0,99511718750000 59 -0,99023437500000 79
-0,99023437500000 -0,98052978515625 -11 12 9 12 3 2048 58 -0,98974609375000 80 -0,98046875000000 99
-0,98046875000000 -0,95904541015625 -10 11 9 11 4 1024 78 -0,97949218750000 100 -0,95898437500000 121
-0,95898437500000 -0,91412353515625 -9 10 9 10 5 512 99 -0,95703125000000 122 -0,91406250000000 144
-0,91406250000000 -0,82037353515625 -8 9 9 9 6 256 121 -0,91015625000000 145 -0,82031250000000 168
-0,82031250000000 -0,64068603515625 -7 8 9 8 7 128 144 -0,81250000000000 169 -0,64062500000000 191
-0,64062500000000 -0,34381103515625 -6 7 9 7 8 64 167 -0,62500000000000 192 -0,34375000000000 210
-0,34375000000000 -0,12506103515625 -5 6 9 6 9 32 188 -0,31250000000000 211 -0,12500000000000 217
-0,12500000000000 -0,00006103515625 -4 5 9 5 10 16 202 -0,06250000000000 218 0,00000000000000 219
0,00000000000000 0,06243896484375 -4 5 9 5 10 16 202 0,06250000000000 220 0,06250000000000 220
0,06250000000000 0,31243896484375 -5 6 9 6 9 32 185 0,09375000000000 221 0,31250000000000 228
0,31250000000000 0,62493896484375 -6 7 9 7 8 64 143 0,32812500000000 229 0,62500000000000 248
0,62500000000000 0,81243896484375 -7 8 9 8 7 128 39 0,63281250000000 249 0,81250000000000 272
0,81250000000000 0,91009521484375 -8 9 9 9 6 256 -193 0,81640625000000 273 0,91015625000000 297
0,91015625000000 0,95697021484375 -9 10 9 10 5 512 -682 0,91210937500000 298 0,95703125000000 321
0,95703125000000 0,97943115234375 -10 11 9 11 4 1024 -1684 0,95800781250000 322 0,97949218750000 344
0,97949218750000 0,98968505859375 -11 12 9 12 3 2048 -3711 0,97998046875000 345 0,98974609375000 365
0,98974609375000 0,99505615234375 -12 13 9 13 2 4096 -7786 0,98999023437500 366 0,99511718750000 387
0,99511718750000 0,99749755859375 -13 14 9 14 1 8192 -15958 0,99523925781250 388 0,99755859375000 407
0,99755859375000 0,99987792968750 -14 15 9 15 7 16384 -32322 0,99761962890625 408 0,99987792968750 445

Fig. 20 - LUT schematic with non-linear addressing scheme

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

