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ABSTRACT  Look-Up Tables (LUT) are generic 

microelectronic blocks used in many different applications. 

They are very useful for interpolation: a desired function is 

sampled, these samples are stored, and the values in between are 

interpolated using Taylor’s approximations. This paper presents 

a reconfigurable LUT with a non-linear sampling scheme used 

in the FPGA implementation of a Gaussian noise generator for 

developing and testing telecommunications Systems, such as the 

Link-BR2 protocol used for V/UHF data telecommunications 

between aircrafts. We sample a given transformation function 

g(x) in a non-linear pattern: whenever g(x) varies abruptly, 

more sampling points are stored on the LUT. The first 

advantage of this non-linear addressing scheme is to save 

memory size in the LUT. By changing internal LUT parameters, 

we can also apply the non-linear addressing scheme to other 

transformation functions. This leads to different kind of noise 

generators, maintaining the non-linear addressing scheme and 

the consequent advantage of memory saving. 

 

Keywords  Reconfigurable Look-Up Table, FPGA 

implementation, Non-linear addressing. 

 
I. INTRODUCTION 

 
Look-Up Tables (LUT) are very common microelectronic 

blocks, used at a very broad range of applications. They can 
be utilized to speed up complex and slow calculations by 
means of storing pre-computed values on it, allowing one to 
achieve very high-speed designs [3]. They can also be used 
on flexible noise generators, in which one can change the 
probability density functions (pdf) of the generated noise just 
changing the content stored inside the LUT [2]. 

The main contribution of this work is to present a generic 
and versatile LUT block for microelectronic designs, using a 
non-linear addressing scheme. The proposed block can be 
used in a very wide range of applications and domains. It has 
the advantage of storing a desired function in a very memory 
saving scheme. 

The proposed design also allows the reconfiguration of a 
given application on the fly, storing different functions, 
sampled on different non-linear schemes. This advantage can 
be very useful on projects that map more than one function, 
in a small memory space: only one LUT block can perform 
different functions, saving silicon area. 
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The reconfigurable LUT proposed on this work was 
applied as the interpolation unit of a Gaussian noise generator 
used for test and design of telecommunication systems such 
as the Link-BR2 protocol, designed by EMBRAER 
(http://www.embraer.com/) under the coordination of 
CISCEA (http://www.ciscea.gov.br/) and technical supervisi- 
on of IEAv (http://www.ieav.cta.br/). This protocol was 
designed to be the backbone of an airborne V/UHF data 
telecommunications system. 

The remaining of the paper is organized as follows: 
Section II describes the LUT structure, the interpolation 
function domain and the approximation scheme used. Section 
III presents the external configuration table that configures 
the LUT parameters in order to correctly address and sample 
differently functions; this section also shows the 
transformation function g(x) used in the reconfigurable LUT 
of our study case: a Gaussian noise generator. Section IV 
selects which order of Taylor’s approximation was used in 
the selected study case. Section V presents the FPGA 
implementation of the reconfigurable LUT using Xilinx 
System Generator, detailing the proposed non-linear 
addressing scheme designed to limit the maximum error 
produced by the LUT around the poles of the transformation 
function. This section also improves the efficiency by using 
half secant approximations. Section VI shows the flexibility 
of this design using the reconfigurable LUT in the 
interpolation of two different functions, using different 
sampling schemes. Section VII closes this article with a 
summary of the achieved results and a flavour of future 
works. 

 
II. LUT STRUCTURE 

 
The LUT designed on this article maps an input x to a 

desired output g(x). The input x is a fixed point, signed, two’s 
complement, 15 bits wide with binary point position equal to 
14. Therefore x varies from -1.00000000000000 to 
+0.99993896484375. The LUT can be used in g(x) functions 
with for differently wide its domains. For example, in the 
case of a domain (-C,+D), where D > C, we just have to scale 
the input from the interval (-D,+D) to (-1,+1), and neglect the 
values on the interval (-D,-C). 

The LUT stores on RAM blocks two values pre-
calculated: the ordinate g(x) itself and its derivate g’(x). For 
an input x, it interpolates g(x) using the Taylor’s 
approximation (1): 
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Since the values stored inside the RAM blocks are non-
uniformly spaced, it is not possible to simply slice some most 
significant bits (MSB) of x for calculating the RAM 
addresses as usually done on LUT interpolation. In our case, 
it is necessary to determine which segment of the RAM is 
related to the input x according to the inferior and superior 
limits in table 2, select the MSB, subtract a constant value K 
given on table 2, and calculate the difference between the 
input x and the biggest value smaller than it stored inside the 
RAM. The block schematic of the proposed non-linear LUT 
subsystem is presented on Fig. 6 at the end of this text. The 
error introduced by the improved LUT is shown in Fig. 7, 
still bounded by the defined limit of 2-15 for all range of input 
values. 

 
III. EXTERNAL CONFIGURATION TABLE 

 
All configuration parameters of the LUT block; including 

the content of its memories, are previously calculated and 
imported to a FPGA. This design was implemented using 
System Generator, on a Xilinx Spartan-3 development kit 
from Avnet (XC3S2000-FG676 Spartan 3 FPGA). 

The External Configuration Table has two inputs related 
to the sampling scheme of the desired function g(x), as can be 
seen on Table 1: the Sampling Limit Point, which defines the 
boundaries of a sampling region, and the Resolution, related 
to the distance between sampled points (for example, for a 
resolution equal to 10, the distance between sampled points is 
equal to 210). Based on this inputs, we calculate the 
configuration parameters of the LUT, which are given on 
table 2 at the end of this text. 

 
 

TABLE 1 – EXTERNAL CONFIGURATION TABLE (INPUT VALUES) 
Region Sampling Limit Point Resolution 

1 -1,00000000000000 15 
2 -0,99770000000000 14 
3 -0,99540000000000 13 
4 -0,99030000000000 12 
5 -0,98050000000000 11 
6 -0,95900000000000 10 
7 -0,91410000000000 9 
8 -0,82040000000000 8 
9 -0,64070000000000 7 

10 -0,34380000000000 6 
11 -0,12510000000000 5 
12 0,00000000000000 5 
13 0,12490000000000 6 
14 0,34360000000000 7 
15 0,64050000000000 8 
16 0,82020000000000 9 
17 0,91400000000000 10 
18 0,95890000000000 11 
19 0,98040000000000 12 
20 0,99010000000000 13 
21 0,99530000000000 14 
22 0,99760000000000 15 
23 0,99993896484375 15 

 
 
In our study case, the non-linear LUT is used on a flexible 

noise generator to interpolate a transformation functions g(x) 
responsible for changing the pdf of a source uniformly 
distributed noise into a signal with a desired pdf (in our case, 

into a Gaussian distributed noise). By changing the 
transformation function of a noise generator, we can generate 
different distributed noise signals. The source uniformly 
distributed noise can be implemented on a wide gamma of 
ways [9, 10], both digital (e.g. pseudo-random number 
generators) and analog. The uniformly distributed noise 
generator used in our case studies was published on [3]. 

The implementation of a linear LUT to interpolate a 
desired transformation function g(x) is straightforward and 
easily found on literate [8, 11]. Usually the function g(x) and 
its derivates are linearly sampled and stored inside RAM 
blocks. In this case, the addressing scheme is constructed 
with the MSB (Most Significant Bits) of the input. Here, this 
scheme was modified in order to compensate the very non-
linear behaviour of g(x) around its poles, and to maintain the 
approximation error bounded. 

As mentioned, the source input signal x in our study case 
has a uniformly distributed pdf function [4], described by (2). 
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Our goal is to produce normally distributed noise, with 

mean value equal to zero and variance equal to σy. This 
means that the LUT’s output should result on signals with a 
pdf function given by (3). 
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To deduce the transformation function g(x), we use 

equation 4.36 from [2] and the pdf equations above (4). 
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Using the identity ( ) ( )xFyyFx yy

1−
=⇔= , it results (5): 
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Comparing (5) with equation 4.36 from [2], give us the 

desired transformation function g(x) in (6): 
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As can be seen in Fig. 1, the transformation function g(x) 
has two poles located at x = -1 and x = +1. Both the 

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011



uniformly distributed input signal and the domain of g(x) go 
from -1 to +1. The range of this function ideally goes from -∞ 
to +∞, what is expected since the output is an unlimited 
normally distributed signal. 

 

 
Fig. 1 - Transformation Function g(x) 

 

 

IV. TAYLOR’S APPROXIMATION 
 
The g(x) transformation function (6) deduced in the 

previous section has a very strong non-linear behaviour 
around its poles. Normal approaches using linear 
interpolation techniques would lead to very high 
approximation errors for inputs around those regions, or it 
would require very big RAM for storing many linearly 
spaced samples g(x0). Another approach would use a chain of 
multipliers in a higher Taylor’s approximation order (7), but 
this solution would require a very big implementation area (a 
very long chain of multipliers and very long tables for storing 
g(x0) and many order of its derivates) in order to get low error 
approximations, although such approach would introduce an 
unreasonable latency that would impact the overall system 
performance.  
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We face a trade-off between the interpolation error 

produced by the LUT and the memory size required to 
construct it. In addiction, every time we increase the order of 
the Taylor’s approximation we need an extra multiplier, 
which increases not only the complexity of the LUT but also 
its latency. So, as we increase the order of the Taylor’s 
Approximation, we have to deal with three disadvantages: (1) 
larger memory required to store one more derivate order of 
the transformation function; (2) increased arithmetic resource 
usage and (3) increased latency due to the cascading of one 
more multiplier. In the other hand, it has the advantage of 
decreasing the error by approximating the transformation 
function g(x) by a curve, instead of a segmented line as it 
occurs in zero and first order Taylor’s Approximations. 

Fig. 2 shows the transformation function (a curve ploted 
wit a continuous line), its zero order Taylor’s approximation 
(marked with circles), its first order (marked with x), second 
order (market with crosses), third order (marked with stars), 
fourth order (marked with squares), and fifth order (marked 

with diamonds). Fig. 3 uses the same identification tags to 
show the error obtained by each approximation order. 

After analyzing the data on Table 3, we concluded that 
the first order Taylor’s approximation scheme is the best 
compromise between hardware costs and approximation 
error. We obtain the biggest marginal improvement by 
increasing from zero to first order Taylor’s approximation: 
the average error decreases 11 times. This approximation 
order has also the lower hardware cost: only one multiplier 
and one extra LUT for the first derivate are needed. 

 

 
Fig. 2 - Zero to Fifth Order Taylor’s Approximation 

 

 
Fig. 3 - Zero to Fifth Order Taylor’s Approximation Error 

 
 

TABLE 3 - ZERO TO FIFTH ORDER TAYLOR’S APPROXIMATION ERROR 
Order Peak Error Average Error 

Zero 0.27705274 1.0282369221 x 10-3 

First 0.18849472 8.6443005413 x 10-5 

Second 0.14720625 4.0277456890 x 10-5 

Third 0.11928469 2.3411098682 x 10-5 

Fourth 0.09700337 1.3598830895 x 10-5 

Fifth 0.07722615 6.5296863738 x 10-6 

 
 

V. LUT-BASED DESIGN 
 
Taking into account the trade-off described in the 

previous section, a LUT-based implementation of a 
transformation function using first order Taylor’s 
approximation scheme was realized. The LUT was designed 
using Xilinx System Generator [5], which is a library of 
parametrical IP cores integrated into Matlab/Simulink, 
allowing for system level design entry and simulation. Fig. 
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20 at the end of this text shows the block schematic 
implementation within System Generator. Its input is a 
uniformly distributed noise in the range from -1 to +1 - 2-15, 
due to the 15 bit input size. 

Three main data paths can be seen in the schematic of 
Fig. 20: The data path of memory block RAM1, which stores 
the values of the transformation function g(x0); the RAM2, 
which stores the values of the first derivate g’(x0); and the 
third data path which uses the Slice2 block to calculate the 
difference between the x0 values present at the input of the 
LUT and the corresponding biggest g(x0) value smaller than it 
stored inside RAM1. 

 
Memory Size Optimization 

 
The depth of RAM blocks on the LUT is defined 

according to the maximum allowed interpolation error: the 
larger the memory size, the smaller the interval between 
adjacent sampling points and smaller the interpolation error. 
Fig. 4 plots the error for each possible input value using 
different memory sizes. The horizontal line represents a 
boundary: it is desirable that the error values stay below that 
limit for all possible inputs. This limit is equal to 2-15 = 
3.0518 x 10-5. The input values are 15 bits long and any error 
lower that 2-15 does not decrease the quality of the LUT. Note 
that the error reaches its maximum for inputs near the poles. 
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Fig. 4 - Error using 25, 26, 213 and 214 memory positions 

 
In order to maintain the error below 2-15, we need to 

increase the memory size, which means increasing the 
density of sample points between 0 and +1. Fig. 4 shows the 
error obtained in a structure with 25, 26, 213 and 214 memory 
positions. As the size of the memory increases, the error 
decreases and stays below the boundary limit for a larger 
share of input values. On the third graph there is a zoom in 
the x-axis, showing only values from 0.99 to 1, while the 
other graphs show them for the entire domain (-1, +1). 

The maximum error limit is respected only by using 214 
memory positions (bottom graph on Fig. 4). In this case we 
reach an error equal to zero for all possible inputs. In this 
extreme case there is no linear interpolation, but a one-to-one 
mapping of all possible input values. In such case there is no 
need for a memory to store the first derivate g’(x), neither a 
multiplier nor an adder are necessary for the interpolation. 

At first glance, it seems that the memory size of the LUT 
was found: a RAM memory with 214 = 16384 positions 
eliminates completely any possible error, but this size is too 
large for implementation on a FPGA. The proposed solution 
uses a non-uniformly spaced memory scheme. It uses less 
memory positions for input values around zero (where the 
error is smaller), and more memory positions for points 
around the pole (where the error is bigger), saving memory 
space. This approach is described in table 2 and graphically 
presented on Fig. 5. This graph depicts how the density of 
sampling points increases as the input reaches the pole 
region, while the table 4 details how the data stored inside 
RAM1 was defined. 

 
TABLE 4 - NON-UNIFORMLY SPACED MEMORY SCHEME. 

Size Start End Inferior Superior MSB K 

16 0 1 0.0000000 0.1249389 4 0 
32 4 10 0.1250000 0.3436889 5 2 
64 22 40 0.3437500 0.6405639 6 13 
128 82 104 0.6406250 0.8202514 7 54 
256 210 233 0.8203125 0.9140014 8 159 
512 468 490 0.9140625 0.9589233 9 393 

1024 982 1003 0.9589843 0.9804077 10 884 
2048 2008 2027 0.9804687 0.9901733 11 1888 
4096 4056 4076 0.9902343 0.9953002 12 3916 
8192 8154 8172 0.9953613 0.9976196 13 7993 

16384 16346 16383 0.9976806 1.0000000 14 16166 
Size: number of memory positions; Start: lower memory position used; 
End: higher memory position used; Inferior and Superior: Identifies the 
limit range of the input for which the error stays below the limit of 2-15; 
MSB: Number of most significant bits taken from the input signal to 
construct the addresses, excepting the signal bit; K: Constant added to 
MSB to construct the addresses 
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Fig. 5 - Function g(x) sampled according the to Table 2 

 
The RAM blocks store the 213 memory positions defined 
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by Table 2. Since the values stored inside RAM1 and RAM2 
are not uniformly spaced anymore, it is not possible to use 
the MSB to address its contents. For calculating the 
addresses, first it is necessary to determine which segment 
includes the input value (according to inferior and superior 
limits in Table 2), select the MSB, and subtract a constant 
value K (6th and 7th columns of table 2). The third path 
calculates the difference between the value x presented at the 
input of the LUT, and the corresponding biggest g(x0) value 
smaller than it stored inside RAM1 by taking the less 
significant bits of the input. The block schematic of the 
improved LUT subsystem is presented on Fig. 6 (at the end 
of this work). The interpolation error obtained with the 
improved LUT is shown in Fig. 6, bounded by the threshold 
limit (2-15) for all input values. 
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Fig. 6 - Error obtained with non-linear addressing scheme 

 
 

Secant Cross Point Choice 
 
The LUT scheme presented in the subsection above 

approximates the curve g(x) by a sequence of straight line 
segments, which are secants to the curve at their extremities. 
Due to the fact that the sampling points are not uniformly 
spaced, it allows the minimization of the total amount of 
memory used for a given error limit. One further 
improvement in the organization of the memory blocks can 
be achieved by changing the cross point position of these line 
segments. This implies in using the same RAM1 memory 
content g(x0), but decreasing the g’(x0) values stored at 
RAM2. 

Fig. 7 shows six different cases where the error is plotted 
for different types of secant (from top to bottom: 100%, 50%, 
90%, 80%, 85% and 82.5% cross point positions). The first 
case (100%) shows the error produced by a full secant 
scheme with the cross points at the extremities of each 
segment, like the one presented on the previous subsection. In 
this case (100%), the error is equal to zero at the border of 
each secant, and it reaches a maximum just in the middle. 
The second graph presents a secant that crosses the curve g(x) 
in the middle (50%) of the distance between two sampling 
points. In this case, the error is equal to zero at the beginning 
of each secant and in the point that corresponds to 50% of the 
distance to the next sampling point. The third graph shows 
the error in the case that the secant crosses g(x) at 90% of the 
distance between the sampling points; here the error becomes 
bigger before the 90% crossing point. Changing the crossing 
points to 80%, 85% and 82.5%, the difference between the 

errors before and after the crossing point decreases, reaching 
equilibrium when the crossing point is placed at 82.5%. 
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Fig. 7 - Secant and Half-Secant Approximation Scheme 

 
Fig. 8 shows the error for all possible LUT input values 

with an 82.5% half-secant. When comparing this graph with 
Fig. 6, it is possible to see that the error is decreased 
approximately by a factor of two. Note that this improvement 
is achieved without changing the size of the RAM, only the 
contents of RAM2 are changed. 

 

 
Fig. 8 - Error for non-linear addressing and half-secant approximation 
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The updated LUT subsystem was validated using two 
different generators for the uniformly distributed noise, one 
based on a chaotic system [3] and the other on a random 
number generator (RNG). Fig. 9 shows respectively, from top 
to bottom, the pdf of the uniformly distributed noise 
generated by the chaotic system [1], its normally distributed 
noise presented at the output of the LUT structure [1], the pdf 
of the uniformly distributed noise generated the RNG and its 
corresponding normally distributed noise. 
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Fig. 9 - LUT-based transformation of uniformly distributed into normally 

distributed noise 

 
 

VI. LUT RECONFIGURATION 
 
The sections above presented the study case of a 

reconfigurable interpolation LUT with non-linear addressing 
scheme for the generation of a Gaussian noise. In this case, 
the LUT was configured by table 2 (External Configuration 
Table) which mapped the transformation function presented 
on (6). 

We can change the input values of table 1 and reconfigure 
the LUT in order to sample (6) according different non-linear 

addressing schemes. It can be also reconfigurable to map 
other transformation functions g(x) using different non-linear 
addressing schemes that suits better each function. This 
flexibility can be used, for example, in the design of noise 
generators that produces outputs with probability distribution 
functions different from the Gaussian noise explained on the 
last subsection. This reconfiguration could be archived on the 
fly, with no extra hardware cost. 

To illustrate this advantage, we use the proposed 
reconfigurable LUT in the interpolation of two different 
equations: the cubic function g(x) = x

3 (fig 10) and the 
exponential function g(x) = e

x (Fig. 11). These equations 
were selected as mathematical examples, and they have no 
correlation with the noise generation application explained on 
last section. 

 

 
Fig. 10 – Cubic Function  

 

 
Fig. 11 – Exponential Function  

 
Each function was sampled according to 2 different non-

linear patterns. For them both, we calculate new values for 
table 2, based on new sampling intervals and resolutions of 
table 1. Note that these intervals can be symmetric to the 
origin, or not. 

Fig. 12 shows the error obtained after applying a first 
order Taylor’s approximation to the cubic function, and Fig. 
13 shows the error for the exponential function. The upper 
graphs of Fig. 12 and 13 use the same sampling intervals 
used on the study case presented on section V (compare to 
the Fig. 6). But the lower graphs of these 2 figures use 
sampling intervals different from the one used on section V, 
and also different one from another. On Fig. 12, the smaller 
resolution occurs in the interval (-0.6,+0.3), and in the 
interval (-0.5,+0.0) on the Fig. 13. 
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Fig. 12 – Approximation Error on Cubic Function  

 

 
Fig. 13 – Approximation Error on Exponential Function  

 
VII. CONCLUSION 

 
This paper identified a flexible approach to the design of 

noise generators. It relies on transformation functions that 
allow the generation of noise signals with different 
probability density functions using as source a uniformly 
distributed noise. A special case of transformation function 
g(x) was presented, allowing the generation if Gaussian 
noise. The mathematical background used to derive this 
particular function was also presented. This mathematical 
procedure can be used to derive transformation functions that 
are able to generate noise with different probability density 
functions, such as Weibull or Lognormal. The transformation 
functions are implemented on Look-Up Tables within 
reconfigurable logic devices, so the reconfiguration of the 
noise generator involves mainly the replacement of the 

contents of the Look-Up Tables. 
This paper also explored specific features of 

transformation functions with poles using techniques for non-
linear LUT addressing and half-secant approximation of the 
transformation function, achieving insignificant interpolation 
error with moderate size of memory. The final system was 
implemented in a Xilinx XCV800 device, using Xilinx ISE 
6.2i, as seen on Table 3  

 
 

TABLE 5 – XILINX ISE 6.2I SYNTHESIS INFORMATION 
Property Value 

Device Part Type XCV 800 
Package Type HQ 240 

External GCLKIOBs 1 out of 4, or 25 % 
External IOBs 49 out of 166, or 29% 
BLOCKRAMs 2 out of 28, or 7% 

Slices 371 out of 9408, or 3% 
GCLKs 1 out of 4, or 25% 

Average Connection Delay 2.016 ns 
Maximum Pin Delay 7.267 ns 

Clock Period Constrain 100 ns 
Maximum Frequency 90.228 MHz 
Power Consumption 18 mW 

Junction Temperature 25 C 
Typical Package Resistance 0.208 ohms 
Typical Package Inductance 13.2 nH 

Typical Package Capacitance 2.25 pF 

 
 
The non-linear addressing scheme presented here requires 

213 memory positions and bounds the error to a minimum 
value. Just to compare, if a linear addressing scheme with 
256 positions were used, 3.27 % of all possible LUT output 
values would stay beyond the limit boundary of 2-15, and 50 
outputs would produce an unacceptably high absolute error 
grater than 0.01. 
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TABLE 2 – EXTERNAL CONFIGURATION TABLE (OUTPUT VALUES) 

3 5 10 15 21 25 26 34 48 49 50 51 52 
Inf. Lim. Precise Sup. Lim. Corrected B D S Z S Desloc. AddLog R0si # R0sf # 

-1,00000000000000 -0,99774169921875 -14 15 9 15 7 16384 0 -1,00000000000000 1 -0,99768066406250 39 
-0,99768066406250 -0,99542236328125 -13 14 9 14 1 8192 19 -0,99755859375000 40 -0,99536132812500 58 
-0,99536132812500 -0,99029541015625 -12 13 9 13 2 4096 38 -0,99511718750000 59 -0,99023437500000 79 
-0,99023437500000 -0,98052978515625 -11 12 9 12 3 2048 58 -0,98974609375000 80 -0,98046875000000 99 
-0,98046875000000 -0,95904541015625 -10 11 9 11 4 1024 78 -0,97949218750000 100 -0,95898437500000 121 
-0,95898437500000 -0,91412353515625 -9 10 9 10 5 512 99 -0,95703125000000 122 -0,91406250000000 144 
-0,91406250000000 -0,82037353515625 -8 9 9 9 6 256 121 -0,91015625000000 145 -0,82031250000000 168 
-0,82031250000000 -0,64068603515625 -7 8 9 8 7 128 144 -0,81250000000000 169 -0,64062500000000 191 
-0,64062500000000 -0,34381103515625 -6 7 9 7 8 64 167 -0,62500000000000 192 -0,34375000000000 210 
-0,34375000000000 -0,12506103515625 -5 6 9 6 9 32 188 -0,31250000000000 211 -0,12500000000000 217 
-0,12500000000000 -0,00006103515625 -4 5 9 5 10 16 202 -0,06250000000000 218 0,00000000000000 219 
0,00000000000000 0,06243896484375 -4 5 9 5 10 16 202 0,06250000000000 220 0,06250000000000 220 
0,06250000000000 0,31243896484375 -5 6 9 6 9 32 185 0,09375000000000 221 0,31250000000000 228 
0,31250000000000 0,62493896484375 -6 7 9 7 8 64 143 0,32812500000000 229 0,62500000000000 248 
0,62500000000000 0,81243896484375 -7 8 9 8 7 128 39 0,63281250000000 249 0,81250000000000 272 
0,81250000000000 0,91009521484375 -8 9 9 9 6 256 -193 0,81640625000000 273 0,91015625000000 297 
0,91015625000000 0,95697021484375 -9 10 9 10 5 512 -682 0,91210937500000 298 0,95703125000000 321 
0,95703125000000 0,97943115234375 -10 11 9 11 4 1024 -1684 0,95800781250000 322 0,97949218750000 344 
0,97949218750000 0,98968505859375 -11 12 9 12 3 2048 -3711 0,97998046875000 345 0,98974609375000 365 
0,98974609375000 0,99505615234375 -12 13 9 13 2 4096 -7786 0,98999023437500 366 0,99511718750000 387 
0,99511718750000 0,99749755859375 -13 14 9 14 1 8192 -15958 0,99523925781250 388 0,99755859375000 407 
0,99755859375000 0,99987792968750 -14 15 9 15 7 16384 -32322 0,99761962890625 408 0,99987792968750 445 

 
 
 

 
Fig. 20 - LUT schematic with non-linear addressing scheme 
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