
Design of a Test Environment for Real-
Time Operating Systems in Satellite On

Board Computer using FPGA

Guilherme B. Resende1, Osamu Saotome2, Paloma M. S. Rocha Rizol1,
Lidia H. S. Sato2, Fernando G. Nicodemos2

1 Univ Estadual Paulista - UNESP – Dep. de Engenharia Elétrica - Av. Dr. Ariberto Cunha, 333 - Pedregulho– Guaratinguetá – SP
2 Instituto Tecnológico de Aeronáutica - Praça Eduardo Gomes, 50 – Vila das Acácias –São José dos Campos – SP

Abstract Nowadays, the availability of microcontrollers
from 8 to 16 bits and 32-bit microprocessors capable of
executing 100 million instructions per second, allows the
existence of applications that require the use of Real-Time
Operating Systems (RTOS) in their embedded systems. This
paper presents ameasurement environment to test an RTOS,
in order to validate its use in special applications, such as
satellite onboard software’s, once it must respondto critical
constraints, like timing. In this case, the objective is to
measure the interrupt latency time, through a high-
performance FPGA,of an embedded system running the
RTOS Real-Time Executive for Multiprocessor System
(RTEMS), widely used by the international spatial
community, for on board computer systems.
Keywords RTOS , RTEMS , Embedded Systems, On Board
Computer

I.INTRODUCTION

The continuous advances in the development of
semiconductors, microcontrollers and microprocessors
have become more powerful each day, thus, being able to
execute millions of instructions per second. Along with
this evolution, applications that were not possible to
imagine years ago, today, can be easily performed due to
the existence of these devices. Certain embedded
applications have reached such a level of complexity, that
they shouldbe managed by an operating system. According
to [1], an embedded system is any system or computing
device that performs adedicated function or, it is designed
to be used with a specific embedded software application.
And according to [2], real-time operating systems are
operating systems that have the ability to respond to an
event in a limited and deterministic time, this is one of the
key factors for performance of a RTOS.Systems that
operate under a RTOS are classified as a hard real-time
system or a soft real-time system. The soft real-time is a
system that tolerates, but do not want, a bit more than the
deadline of the task in a operating system, like, for
example, in video streaming. However, in hard real-time
systems, absolute deadlines must be reached in any ways
and any failure is not acceptable. Some examples of
systems like these are nuclear reactor systems, ABS brake
systems, Air-Traffic Systems, and satellite onboard
software’s.

The main goal of this environment, is the measurement
of performance parameters of a RTOS, because such
parameters are essential for deep tests and the decision on
whether using or not a RTOS in an on-board computer of a
satellite. For instance, RTOS are known and built to fulfill
tasks in a well-known amount of time (deadline), and not
being able to do so, raises the issue on its reliability
concerning its choice.

This work presents the measurement results of the
interrupt latency time. The interrupt latency time must be
as small as possible, once the RTOS stops executing a
certain task, which has a deadline to meet, to serve an
Interrupt Service Routine (ISR) and then, switches back to
the task the RTOS had been executing before the interrupt
request happened. Basically, an interrupt request occurs as
the following: an asynchronous pulse, which is, that can
happen at any time, arrives at the processor. Meanwhile,
the processor is doing its work normally incrementing the
Program Counter Register. When the interrupt is
acknowledged, the processor stores the address of the
Program Counter in the stack (push operation), and sets the
Program Counter to the address that the Interrupt Service
Routine is located. When the processor begins the ISR, in
this work, it masks all the other interrupts to avoid
interrupt nesting, executes the ISR and then sets back the
Program Counter to the address it had before the ISR
arrived (pop operation). For this paper, there has been
created an environment that consists of a software for
analysis and data storage for PC, a hardware unit for
stimuli generation and measurement with the use of
programmable logic technology, in this case, a Field
Programmable Gate Array (FPGA) of high performance
and a Test Device (TD) using the processor ERC32
running the Real-Time Operating System (RTOS) Real-
Time Executive for Multiprocessor Systems (RTEMS).
Both ERC32 and RTOS RTEMS were chosen because
they are aligned with the guidelines for the development of
new satellites at the National Institute of Space Research
(INPE) and with the development line of the European
Space Agency (ESA). The high performance FPGA used
in this work is Altera’s Stratix II FPGA Family. Basically,
this environment can be understood as shown in Figure 1.

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

Fig.1 - Test Environment for Real-Time Operating Systems

Each block of the Figure 1ispresented in the following
section. The Stimuli Measurement Unit, however, is
detailed in section 3, once it is the focus of this paper. The
present article is organized in 5 sections. Section 2
presents the description of the components of the test
environment. Section 3, describes the Stimuli
Measurement Unit. Results are shown in Section 4 and
conclusions in Section 5.

II.THE ENVIRONMENT

A more detailed view of the system can be seen in
Figure 2.

Fig.2 - Block Diagram of the Environment

Three steps have been defined in order to develop the
system:

1. Development of a hardware for stimuli measurement
from a Test Device (TD);

2. Development of an embedded software for RTEMS
to simulate a task being executed and the interrupt
handling;

3. Development of software for PC that is a data base
for analysis of the results from the Test Device.

And also, have defined how the Test Device (TD) is
going to be connected to the Stimuli Measurement Unit.
Two ports of the General Purpose Input/Output (GPIO)
from the Test Device were assigned to be the outputs for
reading the behavior of the embedded processor. The Test
Device has also a pin for receiving external interrupts, and
the pin chosen is called EXTINT4, the interrupt requests
are detailed in section3.2.1. The connections between the
Test Device and the Stimuli Measurement Unit are shown
in Figure 3. The pin assignments can be found in [4] and
[5].

Fig.3 - Connection between the Test Device and the Stimuli

Measurement Unit

A brief explanation of the blocks found in Figure 2 is
given below.

2.1 Stimuli Measurement Unit (FPGA)
The stimuli measurement unit is the interface between

the PC and the Test Device. This block generates pulses
simulating Interruption Requests (IRQs), and storing the
changes in logic levels of the GPIO pins (Figure 3), these
changes are captured by the sampler and later are sent to
the PC through a serial interface for storage and analysis.
The Stimuli Measurement Unit block is highlighted in
Figure 2 since it is the scope of this paper, this block will
be further detailed in section 3.1.

2.2 RTEMS Embedded Software
The next block is the development ofan embedded

software for the SPARC ERC-32 embedded processor,
running the RTOS Real-Time Executive for
Multiprocessors System (RTEMS).

The software consists of a task running indefinitely
generating pulses (square waveform) in one port of the
board’s General Purpose Input/Output (GPIO) while an
Interrupt Request does not require the use of the processor
and does not preempt the current task.

When an IRQ arrives, the Interrupt Service Routine
(ISR) generates pulses (also in a square waveform) in
another pin of the GPIO ports available on the board for a
certain amount of time, and then, it releases the processor
for the task that had been running before the Interrupt
Request arrived. Since there will be a change in logic
levels in both pins, the Sampler (Figure 2) in the FPGA
records this change and stores this data in a memory that
have this data sent when it is completely filled (32768
samples), through the software for PC (section 2.3), is
possible to verify the interrupt latency time t , where t is
shown in the Figure 4.

Fig.4 - Interrupt Latency Time

The flowchart of the embedded software is shown in
Figure5.

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

Fig.5 - Software Flowchart

2.3 Software for PC for Data Storage & Analysis

This software has the function to receive all the data that
comes from the Stimuli Measurement Unit, process these
data and generate graphics for statistical analysis. The
Eclipse IDE [6], has been used for the development of this
software, and it was programmed in JAVA language. The
database was built through a Java Database called
HyperSQL [7], and the tool for report generation is the
JFreeChart [8]. The software communicates with the
Stimuli Measurement Unit through a serial interface and
must be configured to the same configuration of the units
for receiving and transmitting data from and to the FPGA
(parameters like baudrate, parity, stop-bit) . The main
screen is shown in Figure 6.

Fig.6 - Software Main Screen

The top window presents a table that shows all the saved
data, showing an identifier, the date of start and end and
the amount of data in each capture. Before generating the
reports, the desired frequency must be entered in the
software for a correct design of the reports, in this case, it
is 50 MHz. The command window where configuration
parameters are set and sampling begins is shown in Figure
7.

Fig.7 - Command Window

III.HARDWARE FOR STIMULI MEASUREMENT

FROM THE TEST DEVICE

3.1Description of the Hardware for Stimuli Measurement
from a Test Device (TD)

The focus of this hardware is to perform the
measurement of important parameters of the RTOS’s.
Parameters like time between context switches, interrupt
latency, message passaging, among others, are examples of
these important parameters.

The hardware was named Stimuli Measurement Unit and
it consists of a high-performance FPGA programmed in
VHDL (VHSIC Hardware Description Language). The
benefits of using a FPGA, is thatthe delay times using this
technology, are smaller than the delay times that appear
when using a software for measuring these same
parameters.

In its first version [3], the hardware unit for measurement
consisted on context switch measurements, called
cooperative context switching. In this second version, the
aim is to measure interrupt latency time. The following
tools have been used for the development of this hardware
unit:

-Altera’s development software Quartus II
-Altera’s development kit FPGA Nios II Development

Board
The functional diagram for the Stimuli Measurement

Unit is shown in Figure 8.

RX

PARAMETER
SEND

TX

SAMPLER DATA
STORAGE

INTERRUPT
REQUEST

GENERATION

RX
RS232 To

the
PC

FPGA

To
the

Test Device

From
the

Test Device

DATA
SEND

RX
From
the
PC

Fig.8 - Functional Diagram for the Stimuli Measurement Unit

Each of these blocks will be described in the following
sections.

3.2 Description of the blocks of the Stimuli Measurement
Unit

3.2.1 Interrupt Request Generation

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

The interrupt requests were chosen to be automatically
generated by the FPGA, since the memory used in the
Data Storage block is capable of storing 32768 samples, it
would be unpractical and not precise, to manually generate
these requests using a push-button, for instance. There
would be some problems like noise in the push-button
(bouncing), and it would be a tiring task for an operator to
press the switch 32768 times. It was chosen that the FPGA
will generate an Interrupt Request signal with a period of 2
seconds and ton of 100 milliseconds. The signal waveform
is captured in an oscilloscope and it is shown along with
its period and its ton in section 4. It has been used the
FPGA clock to be referred as time base for the pulse
generation. When the programmer tool (from Quartus II)
finishes programming the hardware, the interrupt request
signal does not exist, the FPGA sends logic level 0 to the
Test Device and the embedded processor does not
recognize an IRQ. A push-button was assigned in the
FPGA board to indicate the hardware to start generating
interrupt pulses, another push-button was assigned to stop
this generation at any time, when the memory is totally
filled and there is no more sampling, for instance. Two
leds have been used to indicate the start of interrupt
generation and the stop of such.

3.2.2. Sampler

The Sampler Block has the function to monitor the GPIO
ports that are connected between the FPGA and the Test
Device (Figure 3). The FPGA clock (50 MHz) works as a
the time basis. Every high-edge of the clock, the sampler
will read the logic levels at GPIO 4 and 5 and registers the
state of these pins. Figure 9 explains the basic function of
the sampler.

Fig.9 – ISR latency time capture

As mentioned before, at each high-edge of the board’s
clock, the sampler will read the logic state of GPIO 4 and
5. The task that will be running indefinitely (Figure 5) ,
generates a square waveform at GPIO4, so for this pin, the
sampler will read either 00h or 01h. According to Figure 5,
when a IRQ is acknowledged by the processor, the ISR
generates a square waveform at GPIO5, having the
sampler to read either 00h or 02h (there are 8 GPIO ports
available, but the most significant are mapped in this
project). At each instant of time, the sampler registers what
is happening at the GPIO ports and stores this sample in
the FPGA memory as shown in Table I.
TABLE I–VALUES STORED IN THE MEMORY BY THE SAMPLER
I/O 4-5 t Ticks Value stored in the memory

01h t5 00000005h 0100000005h
00h t6 00000006h 0000000006h
02h t7 00000007h 0200000007h

The Table I show the values stored in the FPGA’s

memory for the example given in Figure 9. The interrupt
latency time, which is the goal of this project, can be
calculated by doing the difference between t7 and t6 , since
the clock period is 20 ns, for this example, there would
exist an interrupt latency time of (7*20) – (6*20) = 20 ns.
All of these data (values stored in the memory) are sent to
the software for PC when the memory is totally filled
(32768 samples of 40 bits each) . There is a counter inside
the sampler to detect if all the samples have been reached.

3.2.3 Reception Block (RX)

The reception block works with serial port RS232 with a
baudrate of 115200 bps, even parity and one stop-bit. This
block works with data of 8 bits (1 byte). Inside the
Reception Block, there is a unit called “uart_rx” that was
built in VHDL, responsible for receiving a bit from the
serial port. Each word received by “uart_rx” is stored in
registers to form a Frame of Command. After the storage
of these words, it is done a calculus of checksum to verify
and validate the data stored in the set of registers, a
Parameter Frame or Data Frame will be generated by the
Parameter Send Block or Data Send Block, according to
the Frame of Command stored in the registers. An “enable
transmission signal” is also created to send for
transmission either parameter or data. The Parameter
Frame is detailed in Section 3.2.4 and the Data Parameter
in Section 3.2.5. The only component of the Reception
Block that was built in VHDL was “uart_tx”, others were
made by components available in Altera’s Quartus II
library. The Frame of Command is shown in Figure 10.

Fig.10 - Frame of Command

The frame Command consists of a 4-byte frame that is
sent from the Software for PC to the Stimuli Measurement
Unit. The description of each byte of the frame is given on
Table II.

TABLE II - FRAME OF COMMAND

Field Code Description
STX 02h Start of Transmission
ID 11h Request Data Send

 12h Request End of Data Send
 13h Request Parameter Send

ETX 03h End of Transmission
CKS Least significant byte from the sum of all fields

A block diagram of RX is shown inFigure 10.

Fig. 11 - Reception Block (RX) Diagram

3.2.4 Parameter Send

The Parameter Frame is a 4-byte frame that is sent from
the Stimuli Measurement Unit to the Software for PC, and
it contains the FPGA’s operating frequency. The frame

STX Command
ID ETX CKS

8 Bits 8 bits 8 bits 8 bits

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

and its description are given in Figure 12, and its content
as described in Table III.

Fig.12 - Parameter Frame

TABLEIII- PARAMETER FRAME
Field Code Description
STX 02h Start of Transmission
PAR 32h Parameter:Clock frequency of 50 MHz
ETX 03h End of Transmission
CKS Least significant byte from the sum of all fields

This block is responsible for creating this frame. The
circuit for Parameter Send can be understood by the block
diagramshown in Figure 13.

Fig.13 - Block Diagram for Parameter Send

Each field received by the circuit, is compared with the
values given above (in Table 2), if all of them are correct,
than the frame is sent to transmission.

3.2.5 Data Send

The Data Frame is also a 4-byte frame and it is sent from
the Stimuli Measurement Unit to the Software for PC. It
contains the data from the samples measured at the I/O
pins of the Test Device. The frame and its description are
givenin Figure 14,and its content as described in Table IV.

Fig.14 - Data Frame

TableIV - DATA FRAME
Field Code Description
STX 02h Start Of Transmission
DF 256 data of 5 bytes Data

ETX 03h End Of Transmission
CKS Least significant byte from the sum

of all fields

This block is responsible for creating this frame and to
control an address counter for sending the data that is
stored in the FPGA’s memory.

3.2.6 Data Storage

The Data Storage block uses the FPGA’s internal
memory, limiting the capacity of storage for 32768 words
of 40 bits each. It is responsible for saving the data that
comes from the Sampler and making them available for
the Data Send block to be sent for the Software for PC for
analysis.

3.2.7 Transmission Block (TX)

The Transmission Block has a component built in VHDL
that has the same parameters for serial communication like

the component “uart_rx” from the Reception Block (3.2.3).
The component is called “uart_tx”.

Fig.15 - Transmission Block (TX) Diagram

This block will either send parameter or data, as
mentioned before, and “uart_tx” only makes the data
available if a transmission request signal is present. A
block diagram is shown in Figure 15 for better
understanding.

IV. RESULTS

As mentioned in Section 3.2.1 , the waveforms for the
Interrupt Generation are shown in Figures 16 and 17. The
Figure 16 shows how the signal behaves through time and
the time period for this signal, it possesses a high-logic
level at each 2 seconds. And Figure 17 displays the
amount of time that the IRQ signal is in its ON state. This
signal is this one that generates a IRQ to the Test Device.
The results for the other components of the Stimuli
Measurement Unit can be found in [3].

Fig.16 - Interrupt Request Time Period

Fig.17 - Interrupt Request ton

V. CONCLUSIONS

STX PAR ETX CKS

8 Bits 8 bits 8 bits 8 bits

STX DF

8 Bits 256 x 5 bytes

ETX

8 bits

CKS

8 bits

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

This environment has been developed due to the need of
testing critical spacial embedded systems. This paper
focused on the development of a Stimuli Measurement
Unit using a high-performance FPGA for measuring the
interrupt latency time of anembedded processor for space
application ERC32, running the RTOS RTEMS. The
implementation of the embedded software will be done in
future works.

REFERENCES

[1] A. Guerrouat, H. Richter, “A Formal Approach for Analysis
and Testing of Reliable Embedded Systems”. Electronic Notes in
Theoretical Computer Science, v.141, n. 3, p.91-106, December
2005.

[2] D. Simon, An Embedded Software Primer. 1ed Pearson
Educational, 1996.

[3] L. H. Shibuya, S. Sato, O. Saotome, F. Nicodemos. “A real-time
system based on FPGA to measure the transition time between tasks
in a RTOS.” Publishedat WSE 2010, 2010.

[4] Altera’s Nios Development Board Stratix II Edition – Reference
Manual

[5] Atmel’s TSC695F SPARC 32-bit Space Processor User Manual
[6] “http://www.eclipse.org/downloads”

[7] “

, accessed in July
10th, 2011.
http://www.hsqldb.org”

[8] “
 , accessed in July 10th, 2011.

http://www.jfree.org/jfreechart”

, accessed in July
10th, 2011.

ISSN: 1983 7402 ITA, 27 a 30 de setembro de 2011

http://www.eclipse.org/downloads�
http://www.hsqldb.org/�
http://www.jfree.org/jfreechart�

