

# Avaliação de Ruído Crosstalk em uma Stripline e uma Microstrip

Elaine Santos, Ailton Akira Shinoda UNESP - Avenida Brasil, 56 - Centro 15385-000 Ilha Solteira - SP

*Resumo* — O objetivo desse trabalho é mostrar como o ruído *crosstalk* pode afetar a integridade de sinal, influenciando o projeto de trilhas em uma placa de circuito impresso em *microstrip* e *stripline*. O efeito do ruído *crosstalk* é avaliado baseado nos parâmetros de capacitâncias e indutâncias (auto e mútua) com o auxílio de uma ferramenta computacional, além da influência da separação do traço na geração de ruído *crosstalk*.

Palavras-Chave — Microstrip, Stripline, Crosstalk.

### I. INTRODUÇÃO

Confiabilidade e velocidade de operação (frequência de operação) são requisitos básicos para equipamentos eletrônicos [2]. Com o aumento dessas frequências de operação atingindo dezenas de GHz, as interconexões ou trilhas da placa de circuito impresso (PCI) passam a se comportar como linhas de transmissão [2].

Tal fato remete a uma grande preocupação nos padrões de emissão de EMC/EMI, pois os equipamentos eletrônicos devem ter emissões de interferências eletromagnéticas apropriadas [8]. Problemas de interferências podem ocasionar erros na transmissão de informações.

Isso ocorre em sistemas com alta freqüência de operação devido às interconexões, propriedades elétricas das placas, dispositivos passivos e ativos (CI's, FPGA's, microcontroladores, etc.) através dos sinais digitais interagindo como formas de ondas de tensão e corrente [3].

Uma interferência indesejada que afeta a integridade de sinal é o ruído *crosstalk* que é um dentre quatro grandes grupos de problemas que compõem tal categoria [1,2]. A duração, qualidade do sinal, *crosstalk* e interferência eletromagnética estão incluídas nessas classes [2].

A seção 2 descreve os principais conceitos sobre ruído *crosstalk*, a seção 3 apresenta a configuração do circuito empregada nesse trabalho, a seção 4 mostra os resultados da simulação e a seção 5 apresenta as conclusões.

| E.    | Santos   | ,      | eng_elaine20    | 004@yahoo.   | com.b | r, A.   | Shinoc   | la, |
|-------|----------|--------|-----------------|--------------|-------|---------|----------|-----|
| shine | da@dee.f | eis.ui | nesp.br, Tel +5 | 55-18-3743-1 | 1290. |         |          |     |
| Este  | trabalho | foi    | parcialmente    | financiado   | pela  | TROPICO | Sistemas | e   |

Telecomunicações da Amazônia Ltda.

#### II. CROSSTALK

O termo *crosstalk* é referido a um problema de integridade de sinal, em que uma trilha ao transmitir um sinal qualquer, interfere em outra trilha vizinha. Tal fato é devido a indutâncias e capacitâncias mútuas [4].

Em outras palavras são acoplamentos indesejados de tensões e correntes entre condutores vizinhos [7].

Quando um sinal percorre uma trilha, uma onda eletromagnética se propaga através do traçado gerando anéis de linhas de campo magnético. Essas linhas de campo induzem tensões e correntes indesejadas em trilhas vizinhas.

Em termos de qualidade de integridade de sinal, é admitido um ruído total de 15% e pelo menos 5% é devido a erros de *crosstalk* [2]. Mas se recomenda que esse ruído não ultrapasse um valor superior a 3%, para não se ter maiores preocupações [2].





Fig. 2 - Anéis de linhas de campos magnéticos

A Fig.1 mostra o que ocorre quando algum sinal percorre a trilha agressora e nenhum sinal na trilha vítima [2]. No caso ideal a tensão da trilha vítima seria nula, mas devido ao ruído de *crosstalk* há um acoplamento do sinal da trilha agressora para a trilha vítima. A Fig. 2 ilustra as linhas de campo magnético entre trilhas vizinhas de uma PCI.





Foi considerada uma estrutura de duas linhas impressas nesse trabalho, onde a PCI possui duas faces metálicas [9]. Uma com mesmo substrato e outra com substratos diferentes. A placa que contém o mesmo substrato nas duas camadas é a *stripline* (Fig.6), no caso da placa que contém duas camadas diferentes, sendo uma delas o ar (Er=1) é a *microstrip* (Fig. 4).

As linhas impressas são um caso particular das linhas de transmissão, pois correspondem a comprimentos muito pequenos [9]. São associadas a circuitos de frequências muito altas, superiores a 300 MHz [9].

Para a análise de *crosstalk* de uma *stripline* e uma *microstrip* são consideradas duas linhas de transmissão. A medida do ruído inicial é chamado de *crosstalk near end* e a final chamado de *crosstalk far end* [6].

A referência [6] apresenta um estudo do ruído *crosstalk* baseado nas indutâncias e capacitâncias. As matrizes de capacitâncias e indutâncias são:

$$C = \begin{bmatrix} C_s & -C_m \\ -C_m & C_s \end{bmatrix}$$
(1)

Onde:  $C_s$  é a capacitância auto e  $C_m$  a capacitância mútua.

$$L = \begin{bmatrix} L_S & L_m \\ L_m & L_S \end{bmatrix}$$
(2)

Onde:  $L_s$  é a indutância auto e  $L_m$  a indutância mútua.

$$C_t = C_m + C_s \tag{3}$$

A Eq. 4 mostra a relação sinal-ruído *crosstalk near end* e a Eq. 5 mostra a relação sinal-ruído *crosstalk far end*.

$$\frac{V_{ne}(t)}{V_{swing}} = \frac{1}{4} \left( \frac{C_m}{C_t} + \frac{L_m}{L_s} \right)$$
(4)

$$\frac{V_{fe}(t)}{V_{swing}} = \frac{1}{2} \left( \frac{C_m}{C_t} - \frac{L_m}{L_s} \right) \frac{t_f}{t_r}$$
(5)

Onde:  $V_{ne}(t)$  é a tensão de *crosstalk near end*,  $V_{fe}(t)$  é a tensão de *crosstalk far end*,  $V_{swing}$  é a tensão de balanço,  $t_f$  é o tempo de descida e  $t_r$  é o tempo de subida.

As técnicas usuais para a análise de *crosstalk* são ferramentas computacionais do tipo *Field Solver 2D* e que utilizam as Equações de Maxwell para determinar os acoplamentos indesejados. Nesse trabalho a ferramenta computacional utilizada foi o *Hyperlynx Mentor Graphics* [5].

#### III. CONFIGURAÇÃO DO CIRCUITO

A Fig. 3 ilustra a configuração do circuito de uma *microstrip* no simulador *Hyperlynx*, a Fig. 4-a mostra a estrutura física da *microstrip* e a Fig. 4-b o seu desenho.





Fig. 4 – Microstrip: (a); (b) Fonte: [6]

Onde: W = 1,75 mm; H=1 mm; T= 0,034 mm; E<sub>r</sub>= 1 (ar);  $Z_0=50 \Omega \text{ e S}$  varia entre 0,525 mm a 1,50 mm.

A Fig. 5 ilustra a configuração do circuito de uma *stripline* no simulador *Hyperlynx*, a Fig. 6-a mostra a estrutura física da *stripline* e a Fig. 6-b o seu desenho.



Fig. 5 – Stripline





Fig. 6 – *Stripline* :(a); (b) Fonte: [6]

IV. EFEITOS DE CROSSTALK NA INTEGRIDADE DO SINAL

As Fig. 7, Fig.8 e Fig.9 são os resultados da simulação de crosstalk do microstrip. Os resultados do stripline são apresentados na Fig. 11, Fig. 12 e Fig. 13. As Fig. 10 e Fig. 14 ilustram, respectivamente, as linhas de campo magnético da microstrip e stripline.



Fig. 7 – *Microstrip* sinal *falling* edge 0,525 mm.



Fig. 8 - Crosstalk near end e far end da microstrip 0,525 mm.



Fig. 9 – Crosstalk near end e far end da microstrip 1,5 mm.



HyperLynx V8.0

Fig. 10 - Linhas de campos magnéticos da microstrip.



Fig. 11 - Stripline sinal falling edge 0,525 mm.

Onde W= 0,25 mm; H= 0,2 mm; T=0,034 mm; E<sub>r</sub>=4.8 (FR4); Zo=20.4  $\Omega$  e S varia de 0,075 mm a 0,775 mm.





Fig. 12 – Crosstalk near end e far end da stripline 0,525 mm.



Fig. 13 - Crosstalk near end e far end da stripline 1,5 mm.



Fig. 14 – Linhas de campo magnético da stripline.

A Tabela I e a Tabela II mostram a variação do traço de separação de uma *microstrip* variando de 0,075 a 1,5 mm. Elas mostram também o nível de ruído *crosstalk near end* máximo e *crosstalk far end* máximo respectivamente. A comparação é feita para o caso da ferramenta computacional Hyperlynx Mentor Graphics utilizada nesse trabalho em relação aos casos da Eq. 4 e Eq. 5.

A Fig. 15 e a Fig. 16 mostram os dados da Tabela I e Tabela II respectivamente, onde se observa a relação do traço de separação sobre o comprimento da *microstrip* versus porcentagem de ruído.

|  | FABELA I | RELAÇÃO DO | TRAÇO DE | SEPARAÇÃO DE | UMA MICROSTRIE |
|--|----------|------------|----------|--------------|----------------|
|--|----------|------------|----------|--------------|----------------|

| Espaço |            | Ruído (%) near | Ruído(%) near end |
|--------|------------|----------------|-------------------|
| (mm)   | <b>S</b> / | end            | Eq. 4             |
|        | W          | Hyperlynx      |                   |
| 0,075  | 0,043      | 16             | 11,63             |
| 0,125  | 0,071      | 12,9           | 9,54              |
| 0,25   | 0,143      | 8,76           | 6,71              |
| 0,275  | 0,214      | 6,47           | 5,05              |
| 0,525  | 0,357      | 3,79           | 3,03              |
| 0,775  | 0,5        | 2,3            | 1,87              |
| 1,25   | 0,714      | 1,1            | 0,92              |
| 1,50   | 0,857      | 0,69           | 0,58              |

Onde: Tensão de transição do nível lógico alto foi de 3,029 V.

TABELA II RELAÇÃO DO TRAÇO DE SEPARAÇÃO DE UMA MICROSTRIP

| Espaço | S/W   | Ruído (%) far end | Ruído(%) far end |
|--------|-------|-------------------|------------------|
| (mm)   |       | Hyperlynx         | Eq. 5            |
| 0,075  | 0,043 | 5                 | 3,2              |
| 0,125  | 0,071 | 3,79              | 2,1              |
| 0,25   | 0,143 | 2,4               | 1                |
| 0,275  | 0,214 | 1,8               | 0,4              |
| 0,525  | 0,357 | 1                 | 0,2              |
| 0,775  | 0,5   | 0,9               | 0,18             |
| 1,25   | 0,714 | 0,7               | 0,17             |
| 1,50   | 0,857 | 0,5               | 0,14             |

Onde: Tensão de transição do nível lógico alto foi de 3,050 V.



Fig. 15 - Crosstalk near end (Hyperlynx e Eq. 4).





Fig. 16 - Crosstalk far end (Hyperlynx e Eq. 5).

A Tabela III e a Tabela IV mostram a variação do traço de separação de uma *stripline* variando de 0,075 a 1,5 mm. Elas mostram também o nível de ruído *crosstalk near end* máximo e *crosstalk far end* máximo respectivamente. A comparação é feita para o caso o caso da ferramenta computacional Hyperlynx Mentor Graphics utilizada nesse trabalho em relação aos casos da Eq. 4 e Eq. 5.

A Fig. 17 e a Fig. 18 mostram os dados da Tabela III e Tabela IV respectivamente, onde se observa a relação do traço de separação sobre o comprimento da *stripline* versus porcentagem de ruído.

| Espaço | S/W | Ruído (%) near end | Ruído(%) near end |
|--------|-----|--------------------|-------------------|
| (mm)   |     | Hyperlynx          | Eq. 4             |
| 0,075  | 0,3 | 20,44              | 15,32             |
| 0,125  | 0,5 | 14,6               | 11,61             |
| 0,25   | 1   | 7,61               | 6,45              |
| 0,275  | 1,5 | 4,29               | 3,76              |
| 0,525  | 2,5 | 1,5                | 1,34              |
| 0,775  | 3,5 | 0,54               | 0,49              |
| 1,25   | 5   | 0,12               | 0,11              |
| 1,50   | 6   | 0,04               | 0,0000004         |

Onde: Tensão de transição do nível lógico alto foi de 3,026 V.

TABELA IV RELAÇÃO DO TRAÇO DE SEPARAÇÃO DE UMA STRIPLINE

| Espaço | S/W | Ruído (%) far end | Ruído(%) far end |
|--------|-----|-------------------|------------------|
| (mm)   |     | Hyperlynx         | Eq. 5            |
| 0,075  | 0,3 | 5,16              | 4,6              |
| 0,125  | 0,5 | 2,96              | 2,66             |
| 0,25   | 1   | 1,18              | 0,83             |
| 0,275  | 1,5 | 0,61              | 0,3              |
| 0,525  | 2,5 | 0,19              | 0,04             |
| 0,775  | 3,5 | 0,06              | 0,005            |
| 1,25   | 5   | 0,01              | 0,0004           |
| 1,50   | 6   | 0,0005            | 0,0001           |

Onde: Tensão de transição do nível lógico alto foi de 3,015 V.



Fig. 17- Crosstalk near end (Hyperlynx e Eq. 4).



V. CONCLUSÃO

Com o incremento da velocidade de operação (altas frequências de *clock*) dos circuitos em PCI, o comprimento de onda torna-se comparável ao comprimento das interconexões. Isso implica que a análise dos circuitos seja feita em termos de linha de transmissão. Um dos efeitos indesejáveis dessa mudança de comportamento é o aparecimento de *crosstalk* na integridade do sinal, inexistente em PCI com baixas frequências de operação.

Nesse trabalho foi mostrado como o problema de integridade de sinal *crosstalk* é gerado a partir da transição de nível da trilha agressora em trilhas vítimas e os fatores que influenciam o comportamento do ruído.

Foram analisadas duas linhas de transmissão, *microstrip* (Fig. 4) e *stripline* (Fig. 6). Fazendo a variação do traço de



separação de ambas o nível de ruído se altera. Uma comparação entre a ferramenta computacional Hyperlynx Mentor Graphics e a Eq.4 e Eq.5 foram feitas e os resultados se mostraram coerentes.

A porcentagem de ruído *crosstalk near end* máximo na *microstrip* para um traço de separação de 0,525 mm é 95,68% menor em relação ao traço de separação de 1,5 mm para o caso da ferramenta computacional e 95,01% para o caso da Eq. 4.

A porcentagem de ruído *crosstalk far end* máximo na *microstrip* para um traço de separação de 0,525 mm é 90% menor em relação ao traço de separação de 1,5 mm para o caso da ferramenta computacional e 95,63% para o caso da Eq. 4.

A porcentagem de ruído *crosstalk near end* máximo e *far end máximo* na *stripline* para um traço de separação de 0,525 mm é 99% menor em relação ao traço de separação de 1,5 mm para o caso os dois casos analisados.

O limite máximo de ruído *crosstalk* que garante que o mesmo não ultrapasse o limite de 5% permitido, considerando os dados utilizados nesse trabalho, é observado com um traço de separação de 0,15 mm em uma *stripline* e 0,25 mm em uma *microstrip*, para os dois casos analisados.

## REFERÊNCIAS

- C. P. Antônio, M. Alexandre, T.F. Admilson, C. B. Clemente, "Análise de integridade de sinal emissão eletromagnética e térmica em placa controladora dei mpressão", CEFET-PR, Curitiba-BR.
- [2] B. Eric, "Signal and power integrity", 2<sup>nd</sup> Edition, Prentice Hall, 2009.
- [3] Y. C. Raymond, "Signal integrity", In. Santa Clara Califórnia, Disponível em: <<u>http://www.sigrity.com/papers/EMC-IEEE-BK/si\_chapter.pdf</u>>. Acesso em: 25/06/2012.
- [4] M. B. Geise, "Modelagem de fontes e cargas digitais para análise de integridade de sinais usando o método de elementos finitos", Universidade Federal do Paraná – PR, Curitiba- BR, Novembro 2008.
- [5] "Mentor graphics boardsim", Software Version 8.0, 2009.
- [6] S. Y. Soo, L. J. Cheol, P. H. June, C. S. Soo, "Empirical equations on electrical parameters of coupled microstrip lines for crosstalk estimation in printed circuit board", November, 2001 [Transactions on advanced packaging, vol.24, n°4, IEEE].
- [7] H. Kaer, L. Wenyi, Y. Honcheng, "The signal integrity of the high-speed IC", [Desing, Frontier in Education Conference, 2009. FIE'09.39<sup>th</sup> IEEE].
- [8] C. R. Paul, "Introduction to electromagnetic compatibility", 2<sup>nd</sup> Edition, John Wiley & Sons, 2006.
- [9] A. B. M, Carlos, J. S. Henrique, "Introdução às linhas de transmissão", 2005.