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Abstract  Several algorithms of hazard-free logic 

minimization were proposed for extended burst-mode 

asynchronous controllers that operate in the generalized 

fundamental mode (GFM) and accept the so-called 

extended burst-mode (XBM) Specification. This class of 

controller’s shows to be very interesting because the XBM 

specification allows describing a wide range of circuits, 

from complex asynchronous interfaces to Moore-type 

synchronous controllers that operate in the two edges of 

the clock signal. Another interesting class of asynchronous 

controllers is the speed-independent (SI) ones. They are 

more robusts, more modulate and easy to be verified, 

when compared with GFM XBM counter-parts.  

Considering and conjugating the advantages provided by 

both approaches, in this paper we propose an algorithm 

for hazard-free logic minimization, exact in the number of 

literals, for SI asynchronous controllers that starts from 

the XBM specification, being highly suitable for the 

implementation on high accuracy, robust and complex 

systems, like the ones actually embedded in military 

systems and platforms. The proposed algorithm has been 

successfully applied to a set of known benchmarks 

showing good and potential results for practical 

implementation.  
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hazard, XBM specification 

 

 

I. INTRODUCTION 

     Currently, a considerable interest has been given to 

asynchronous design [1] due to the increasing 

complexity of digital systems and the need for the 

improvement of their performance. An important 

component in the asynchronous design is the 

asynchronous controller. One class of asynchronous 

controllers is asynchronous finite-state machines, 

originally proposed by Huffman [1], as well as their 

extensions, that accept a specification called (extended) 

burst-mode (XBM/BM) [2]-[5]. These controllers 

operate according to the bounded gate and wire delay 

model and interact with the environment in the 

generalized fundamental mode (GFM), where transition 

from stable states can occur both for single or multiple 

input and output changes. The XBM asynchronous 

controllers are an interesting class of controllers 

because the XBM specification allows describing a 

wide range of controllers, from complex asynchronous 

interfaces to synchronous ones that operates in the two 

transitions of the clock signal (heterogeneous systems).  
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In recent years, there have been a number of successful 

and efficient real-life asynchronous circuits designed as 

extended burst-mode asynchronous controllers [6].       

In contrast, Speed-independent (SI) asynchronous 

controllers [7,8] are also attractive, because they can be 

proven correct  and tolerate delay variations, resulting 

from technology migration or temperature variations. 

These controllers work correctly regardless of the 

delays of the individual gates, while assuming constant 

wire delays for multiple fanouts [8]. As a result, 

achieving speed-independent circuits avoids the need 

for timing assumptions and delays lines that tend to 

increase area and reduce the reliability of the circuit 

(hazard-free essential). Speed-independent modules can 

thus easily be replaced whenever a faster or more 

advanced technology is introduced. In addition, speed-

independent controllers have a so called “testability 

advantage”, once they are self-checking with respect to 

output stuck-at-faults [8].      

       An important step in the synthesis process of 

(extended) burst-mode and SI controllers is the logic 

minimization. In this case, it must be considered that:  

a) Hazard-free logic minimization, targeting 

(extended) burst-mode controllers operating in the 

GFM, has been pursued by different authors [9]-[14]. 

Initially, Nowick et al. [9] proposed an algorithm based 

on Quine-McCluskey. Posteriorly, the HFMIN 

minimization tool [10], although being literal-exact, 

showed to require thousands of seconds when dealing 

with large controllers. Furthermore it is not able to 

complete the largest benchmarks [11]. The IMPYMIN 

minimization tool [12] is only capable of producing 

product-exact solutions. The ESPRESSO-HF 

minimization tool [12] uses heuristic algorithms and 

thus cannot guarantee either literal or products exact 

solutions. These logic minimization tools are used in 

two burst-mode synthesis tools: 3D (HFMIN) [4,5], that 

synthesize extended burst-mode controllers (target 

architecture – Extended Huffman Machine - M_HE) 

from an XBM specification; and MINIMALIST 

(HFMIN, IMPYMIN and ESPRESSO-HF) [2],[10],[12] 

that synthesize burst-mode controllers (target 

architecture – Huffman Machine - M_H) from a burst-

mode specification (BM). Jacobson et al [11] proposed 

a new minimization tool that performs literal exact 

hazard-free solutions for extended burst-mode 

controllers (ATACS). This approach can handle large 

circuits in a reasonable time (less than thousands of 

seconds). An extension of the ATACS algorithm 

(inserted in the Miriã synthesis tool) was proposed for 

multi-burst-mode asynchronous controllers (target 

architecture – Generalized SR latch - gRS) that also 
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operate in the GFM [13,14]. 

b) Hazard-free logic minimization, targeting SI 

controllers, has been proposed by Beerel [8,15] and 

Kondratyev [16]. These logic minimization tools are 

used in two SI synthesis tools: SYN (use an initial 

version of ATACS) [15], that synthesizes in an 

architecture denominated standard C, that uses the C 

latch and basic gates; and   PETRIFY (ESPRESSO-

MC) [16,17], that synthesize either non-standard C or 

standard RS architectures. These methods start from the 

state graph specification, introduced by [7], and are 

based on similar theories for the extraction of Fset and 

Freset functions (hazard-free logic minimization step). 

There is one important drawback in the logic 

minimization:  SG specification grows exponentially 

with the number of signals, what limits its applicability 

to small or medium size controllers.  To avoid the 

explosion of states of the SG specification, the 

PETRIFY tool presents some alternatives, for example, 

the method of structural logic minimization [18], that 

extracts the Boolean functions directly from the Petri-

net specification, so called signal transition graph 

(STG), also introduced by [7].  

    Other hazard-free logic minimization techniques 

were proposed, focusing on other goals. For example, 

Nowick et al. [19] proposed a multi-level minimization 

algorithm for burst-mode controllers. In [20], it is used 

a synchronous technology mapping technique for the 

design of generalized fundamental mode asynchronous 

circuit in the multi-level style. In [21]-[23] some 

techniques are proposed for logic minimization in the 

dual-rail style. 

     In this paper, the hazard-free logic minimization 

theory previously proposed by Nowick and Yun [2]-[5] 

is extended, and applied in a new tool of hazard-free 

logic minimization, suitable for speed-independent 

extended-burst-mode asynchronous (SI_XBM) 

controllers. These controllers are implemented in the 

Feedback RS Standard (FRS) architecture (see Fig. 1). 

This architecture (in the case, the feedbacks) allows 

relaxing the SI logic minimization conditions. This tool 

uses an intermediate data structure based on cubes, 

therefore allowing extracting Booleans functions of the 

SI_XBM controllers with a large number of signals. 

The proposed logic minimizer is based on the ATACS 

algorithm [11]. The resulting circuits, once conjugating 

and taking advantages of both approaches (“speed-

independent” and “extended-burst-mode asynchronous” 

controllers) shows to be highly suitable for 

implementation on high accuracy, robusteness and 

complex systems, like the ones actually embedded in 

military systems and platforms.     

LSS, TSS, State-var, Output

FRESET

FSET
Output

State-var

 
Fig. 1. Feedback RS standard architecture. 

II. EXTENDED BURST-MODE SPECIFICATION 

        The Burst-Mode specification was proposed by a 

group from HP, formalized by Nowick [2] and extended 

by Yun [3]-[5]. Figure 2 shows an extended burst mode 

specification with 4 inputs (a,b,c,d), 3 outputs (x,y,z) 

and a initial state 0. The signals b, c and d are signals 

that are sensitive to transition (TSS). The description 

bd/y  in state transition 8 means that the output (y: 

10) will follow the input burst (b: 10 AND d: 

10). The level sensitive signal (LSS) a is used to 

describe the mutual exclusion between state transitions 

2 and 3. The directed don’t care signal b
*
, in state 

transitions 6 and 7, means that b may either change its 

value or remain in its old value. In all state transition, it 

should have, at least, a signal denominated 

“compulsory”. A compulsory signal is an input signal 

that, in the previous state transition, is not directed 

don't-care. 
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Fig. 2. Extended Burst-Mode (XBM) Specification. 

 

    The SI_XBM controllers interact with the external 

environment through a handshaking protocol. This 

protocol allows translating the XBM specification to 

operations of input burst/output burst, Ib/Ob mode, in 

which a new input burst is accepted as soon as an 

output burst transition has finished (any timing 

supposition of the fundamental mode). This mode is a 

simplification of the I/O mode [1],[13],[14]. For the 

Ib/Ob operation mode, two more restrictions are 

required: 

 The output burst must never be empty. If this 

happens in the original behavior, an 

acknowledgement output signal must be added.  

 LSS signals must become stable during the 

previous state. The value of a LSS must be 

constant in the state transitions, where it is 

mentioned. This condition eliminates the existing 

restrictions of the setup time and hold time. 

 

III. SPEED-INDEPENDENT CONDITIONS 

       In this section, we formally present the conditions 

when a non-input signal of the XBM specification can 

be implemented in the target architecture. For the 

synthesis of SI controllers, using only basic gates with 

arbitrary fan-in and not needing complex gates, the 

Lemma 1, presented below, should be satisfied.   

 

Lemma 1: (without proof). Two sufficient conditions 

for the implementation of the SI circuits with basic 

gates and Hazard-free logic are:  

1. The circuit does not have an achieved state, which 

is covered for more than one cube.   

2. The achieved states of the circuit that form the 
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sequence of events (0→1...→0) or (1→0...→1) of a 

non-input signal should enable only a cube. 

 

        Lemma 1 explicits the conditions for any 

architecture related to SI circuits, where the cubes are 

implemented by basic gates. The Huffman machines 

and their extensions (in a general application) do not 

satisfy any of the two conditions of the lemma 1.   The 

theory of hazard-free logic minimization for XBM 

functions (fGFM-XBM), proposed by Nowick and Yun, is 

extended to satisfy the lemma 1, where the function    

fSI-XBM is implemented in the feedback RS architecture 

(FSET-SI-XBM and FRESET-SI-XBM). The logic set (FSET-SI-

XBM) and logic reset (FRESET-SI-XBM) are both 

implemented as sum-of-products circuits. The 

feedbacks of this architecture relax the condition 2 of 

the lemma 1 for the transitions 11 and 10, when 

the function is FSET-XBM-SI; and for the transitions 00 

and 01, when the function is FRESET-XBM-SI. 

 

A. Required and privileged cubes 

    Nowick [2,9] created the concept of transition cube, 

which was generalized by Yun [3]-[5]. This cube 

(CT[A,B])  contains all the possible minterms that can 

be reached during the activation of the input burst/ 

output burst of a  state transition,  where A is an initial 

cube and B is a final cube. Figure 3b shows the 

generalized transition cube of the state transition 7 (see 

Fig. 3a) of the Fig. 1. In Fig. 3b, the cube CT[A,B] is 

formed by the initial cube A that is bcdaxyz=2022100 

and for the final cube B that is bcdaxyz=2022220, 

where 2 means don't-care. The end-subcube B' (cover 

the final state) is bcdaxyz=2012010. 
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Fig. 3. Generalized transition cube 

 

     Nowick [2,9] created the concepts of “required 

cube” and “privileged cube”, necessary for the 

development of an algorithm of hazard-free logic 

minimization. 

  

Definition 1: Required Cube. Be a function fSI-XBM  and 

a set T of functional hazard-free transitions  that are 

specified  in fSI-XBM. The cube CTj[A,B]T that 

corresponds to the transitions  0→1 or 1→0,  the final 

cube B  is called a “required cube” of the type CR-SET 

and CR-RESET, respectively. 

Definition 2: Privileged Cube.  Be a function fSI-XBM 

and a set T of functional hazard-free transitions that are 

specified in fSI-XBM. The cube CTj[A,B]  T that 

corresponds to the transitions 0→1 or 1→0, it is called 

of privileged cube of the type CP-SET and CP-RESET, 

respectively.  

 

B. Requirements for logic hazard-free XBM_SI 

transition  

     If a Boolean function fSI-XBM contains a functional 

hazard for some transition of the inputs, then no 

implementation of the function guarantees to avoid 

spurious signals (glitches) during this transition.  

Therefore, to minimize the function fSI-XBM, a set of 

transitions T should be functional hazard-free. The 

requirements (lemmas) to assure that the function       

fSI-XBM, implemented in the feedback RS standard latch 

architecture (functions FSET-SI-XBM- and FRESET-SI-XBM), is 

logic hazard-free is presented here.  

Lemma 2: (without proof) If fSI-XBM presents a 

transition Ti 0→0 in the cube CTi[A,B], then FSET-SI-XBM 

is logic hazard-free because there is no covering.   

Lemma 3: (without proof) If fSI-XBM presents a 

transition Ti 0→1 in the cube CTi[A,B], then FSET-SI-XBM 

is logic hazard-free if and only if: a) there is a unique 

product pi  FSET-SI-XBM  that covers completely the final 

cube B; b) it does not exist a product  pj   FSET-SI-XBM, 

where ij such that  pipj.   

   

C. Logic hazard-free SI_XBM covering  

     In this section it is presented the sufficient 

conditions for a hazard-free covering of a function      

fSI-XBM with a set of specified transitions T. The function 

fSI-XBM is indefinite for all the other state inputs that are 

not specified. For the function FSET-SI-XBM, the 

transitions 11 and 10 of the function fSI-XBM, the 

states with value 1 have a don't-care behavior. 

Definition 3: Illegal Intersection. Be the function   

FSET-SI-XBM implemented in the feedback Set-dominant 

latch architecture; a set T of functional hazard-free 

transitions specified in fSI-XBM; a privileged cube CP-SET 

of fSI-XBM of transitions Tj T; and a product p of      

FSET-SI-XBM. An illegal intersection in fSI-XBM (pCP-

SET) happens if, and only if, the transition Tj is 0→1 

and p doesn't cover completely the required cube of Tj. 

Theorem 1: (without proof) SI_XBM hazard-free 

covering. The function FSET-SI-XBM is a hazard-free 

covering for the function fSI-XBM with a set of transitions 

T in the Feedback RS Standard architecture if, and only 

if: 

1. No product of FSET-SI-XBM intersects the set OFF of 

fSI-XBM. 

2. Each required cube of fSI-XBM should be contained in 

a unique product of FSET-SI-XBM. 

3. No product of FSET-SI-XBM intersects any privileged 

cube illegally. 

 

IV. SI_XBM LOGIC MINIMIZATION ALGORITHM 

    Logic minimization follows the state minimization 

and the state assignment steps [1],[2]-[5]. The algorithm 

proposed for SI_XBM logic minimization is based on 

the ATACS algorithm [11] (exact two-level - state of 

the art) and denominated in this article as 
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ATACS_FSD-SI. Firstly it transforms the XBM 

specification into a cubes table [11]. The ATACS_FSD-

SI algorithm that follows performs mainly six steps:  

1. Trigger cubes extraction. 

2. Context signals extraction. 

3. Intersection cubes extraction. 

4. Violation cubes extraction. 

5. Minimum cover: binate table. 

6. Minimum cover: unate table. 

     These steps are performed twice for each non-input 

signal (output signal and state signal): one for its     

FSET-SI-XBM (F_S) and one for the FRESET-SI-XBM (F_R) 

(the target architecture adopts feedback RS standard 

cell for each non-input signal – see Fig. 1). 

 

A. Extraction of the trigger cubes and context signals   

Definition 4: Trigger signal. Be a state transition TJ  

and a input signal X that belong to XBM specification. 

The signal X is denominated a trigger signal in the 

transition TJ if, and only if, it is active in TJ and his 

value is non-directed don't-care. 

Definition 5: Trigger cube. Be a state transition TJ  

XBM specification and a non-input signal Y  XBM, 

where Y is active in TJ. It is called trigger cube 

[CgFSET(Y)J or CgFRESET(Y)J]  in TJ,  the cube that is 

composed by the values of all of the trigger signals in 

TJ, adding don’t-care values for the other signals. 

Definition 6: Context signal. Be a state transition 

TJXBM specification, the cube CTJ[A,B] and a signal  

XXBM. The signal X is denominated a context signal 

in the transition TJ if, and only if, his value stays 

constant in CTJ [A,B].  

 

The algorithm firstly finds the required cube that 

covers the F_S (For the sake of reading simplicity we 

will always refer to the F_S function. However the 

reader should keep in mind that the same procedure 

also applies for the F_R) of each non-input signal for 

each state transitions of the XBM, where it is active 

(F_S is active whenever there exists a 01 transition. 

F_R is active whenever there exists a 1→0 transition). 

In order to obtain a minimum cover for F_S, the 

algorithm proceeds the determination of the trigger 

cubes and context signals (steps 1 and 2). This cube 

constitutes an initial (non-minimized) cover for F_S. 

The context signals are later used to remove possible 

violations of this initial cover.  By definition, the trigger 

cube covers completely the required cube of the 

respective state transition and therefore satisfies lemma 

3.  

As illustration, in state transition 3 of Fig. 2, there 

is a trigger cube: CgFSET-T3(Y)  bcdaxyz=1222222, 

where b=1 is a trigger signal. The context signals in this 

state transition are c=1, d=0, a=1, x=1 and z=0 (this 

may be seen observing the XBM description in Fig. 2) 

 

B. Extraction of the violation and intersection cubes   

    Each trigger cube can have two types of violations:  

covering and intersection violations.  The steps 3 and 4 

of our algorithm are executed if there are one or both of 

these violations. 

Definition 7: Covering Violation. Be a state transition 

TJXBM specification; and CgTJ-X a trigger cube of TJ 

of the non-input signal X of the function fSI-XBM (F_S or 

F_R). A “covering violation” of the CgTJ-X happens if, 

and only if, there is, at least, a minterm of CgTJ-X where 

the signal X has an opposite value (0 or 1). 

Definition 8: Intersection Violation. Be a state 

transition TJXBM specification; and CgTJ-X the trigger 

cube of TJ of the non-input signal X of the function    

fSI-XBM (F_S or F_R). An “intersection violation” of the 

CgTJ-X happens if, and only if, there is an illegal 

intersection among a privileged cube Cp and CgTJ-X (see 

definition 3.3).  

Definition 9: Violation cube is a cube formed by the 

group of adjacent minterms of the “covering violation” 

of a trigger cube Cg. 

Definition 10: Intersection cube is a cube formed by 

the group of adjacent minterms obtained by the 

“intersection violation” among a privileged cube Cp and 

a trigger cube Cg. 
 

      There are two types of violations. Cover violations 

occur when the initial cover (trigger cube) covers states 

where the F_S is defined to have the opposite value 

(violation cubes). Intersection violations occur when the 

initial cover (trigger cube) violates the lemma 3. The 

intersections between a required cube and a trigger cube 

are called intersection cubes. Both, violation and 

intersection cubes, must be removed from the initial 

cover 
 

C. Covering tables  

      In this section, it is presented the solution of the 

binate and unate tables. Step 5 consists of extracting the 

cubes denominated trigger-FV cubes (free from 

violations), which generates a problem of binate 

covering [24]. These cubes should satisfy lemma 3.  

 

Definition 11: Trigger-FV cube. Be a state transition 

TJ  XBM; and CgTJ-X a trigger cube of TJ of the non-

input signal X of the function fSI-XBM  (F_S or F_R). It is 

called a CgTJ-X of trigger-FV cube (CgTJ-X-FV – free-

violations) if, and only if, there are not covering and 

intersection violations. 

 

     If the trigger cube of a transition TJ is not FV, then 

there is some type of violation, being necessary the 

insertion of appropriate context signals of TJ in order to 

have this violation eliminated. The lines of the binate 

covering table for CgTJ-X are the context signals of TJ, 

while the columns are the violation and intersection 

cubes that are contained in the CgTJ-X. The solution of 

the minimum coverage of the binate table leads to 

finding one or more minimum trigger-FV cubes 

(smaller number of context signals - CgTJ-X-MIN) that 

cover (required cubes) the largest number of state 

transitions and satisfies lemma 3. To obtain the 

minimum coverage of the binate table, ATACS_FSD-SI 
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uses classic reduction techniques [24], the branch and 

bound algorithm for cyclical binate tables [24]. 

     After extracting all the minimum trigger-FV cubes 

for all transition TJXBM specification, where the non-

input signal X is activated for the function fSI-XBM (F_S 

or F_R), a unate covering table is built, where the lines 

are the minimum trigger-FV cubes and the columns are 

the state transitions (required cubes) of the non-input 

signal X of the function fSI-XBM (F_S or F_R). The 

solution for minimum covering of the unate table (step 

6) leads to finding the smallest number of minimum 

trigger-FV cubes that cover all state transitions 

(required cubes), where X is 01 (F_S) or 10 (F_R), 

and that satisfy the theorem 1 To obtain the minimum 

coverage of the unate table, ATACS_FSD-SI uses 

classic reduction techniques, the branch and bound 

algorithm. 
 

V. EXAMPLE 

       We will illustrate the ATACS_FSD-SI algorithm 

through the example shown in Fig. 2. Figure 4 shows 

the context signals, trigger cubes, and required cubes 

for Y_SET (Y+).  Figure 5 shows the binate tables of 

the trigger cubes (state transitions 3 and 4, in the Fig. 

2). The trigger cube of the state transition 7 is FV, 

because there were not violations or intersections cubes. 

The exact minimum solutions for the binate tables are 

respectively the cubes 1121122 and 1022221. For 

example, the trigger_FV cube 1121122 was generated 

inserting the values of the context signals (c, a and x in 

the binate table) into the trigger cube. Figure 6 shows 

the corresponding unate table. Observe that it only 

contains state transitions 3, 4 and 7 (transitions where 

the output signal transition is Y 0→1). The exact 

minimum solutions are the three cubes in the unate 

table. The cube bcdaxyz=1121122 describe the term 

product bcax.  

    Figures 7, 8 and 9 show the same steps, but now for 

the function Y_RESET (Y). This example needs a 

feedback in the product terms that contain the signal a 

(LSS), as shown in Fig. 10. 
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Y+ /4

Y+ /3

Context Trigger

2101120 1222222

1202021 2022222

2022220 2212222
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1002021

1101120

 
Fig. 4. Context, trigger and required cubes for Y_SET. 
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Fig. 5 Binate cover tables from Y_SET. 
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Fig. 6. Unate cover table from Y_SET. 
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Fig. 7. Context, trigger and required cubes for Y_RESET. 
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Fig. 8. Binate cover tables from Y_RESET. 
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Fig. 9. Unate cover table from Y_RESET. 
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Fig. 10. Logic circuits. 

 

VI. RESULTS 

      We applied our logic minimization tool in 14 

different benchmarks, specified in XBM specification. 

The proposed logic minimization tool is named Miriã-

SI.  Table I shows the XBM specification of the 14 

benchmarks. The specification is given in terms of the 

number of states, number of state transitions (St/Tran), 

number of inputs and number of outputs (I/O).  Table I 

also shows the area (number of literals – N-Lit and 

number of gates – N-gate) obtained by the tools: Miriã-

SI, Miriã-GFM-gRS [13,14] and 3D-HMOF (Huffman 

Machine with output feedback) [4,5]. The Miriã-SI 

results were 20% smaller in literals and 20% smaller in 

gates (The latch (complex gate – to see Fig. 1) was 

esteemed as a simple gate)  when compared with 3D. 

There was an increase of literals (20%) and gates 

(10%), compared to Miriã-GFM. 

     Table II shows, for the same set of 14 benchmarks, 

the cycle time and latency time of the circuits obtained 

by the three compared tools. The latency and cycle 

times were obtained assuming a gate delay given by the 

equations (assuming fan-out=1): tmin-gate=(0.1*fan-

in+0.9)  time units and tmax-gate=(0.25*fan-in+2.1) time 

units. The average latch delay was “2 time units”. For 

Miriã-SI the times of cyle and latency are equals. 

      Table II shows an average cycle time reduction of 

35% when compared to 3D and 7% when compared to 

Miriã_GFM. The average latency time penalty was 36% 

when compared to both 3D and Miriã_GFM.    
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      These results were obtained in less than 20 seconds 

(each) when running ATACS_FSD-SI on a PC 

(Windows XP, Pentium 4, 480MB RAM and 2.8 GHz). 

In spite of the penalty in area and latency time, these 

circuits present the advantages of being SI, as: high 

modularity, higher robustness, easiness in formal 

verification and testability (covering without 

redundancy and self-checking property). 
Table I Results: Literals and Gates 

SPEC MIRIÃ-SI MIRIÃ-GFM-gRS 3D-HMOF

I / O St /Tran N-lit /N-gate N-lit /N-gate N-lit /N-gate

4/2Biu-fdma 50/30

5/7Diffeq-alu2 142/56 95/47 139/68

41/23 51/31

4/2Biu-fifo 25/15 23/19 27/20

3/1JK-DET-flip-flop 28/18 24/14 469/155 **

3/2Sbuf-send-pkt2 18/12 15/14 22/16

4/2Scsi-inic-send 33/18 23/18 23/17

2/1D-SET-flip-flop 19/13 16/11 23/28

2/1D-DET-flip-flop 28/17 24/13 33/18

3/1JK-SET-flip-flop 19/14 45/21 107/47

6/4Scsi-targ-send 81/36 70/30 72/35

2/2Select2ph 28/19 24/14 30/17

3/2Selmerge-2ph 60/29 48/25 68/31

2/1T-SET-flip-flop 19/17 16/12 ****

2/1T-DET-flip-flop 28/13 24/14 29/15

6/7

7/9

14/16

4/6

4/8

4/6

8/12

4/8

11/14

6/8

4/5

8/32

6/12

4/8

Table II Results: Latency and Cycle times 

MIRIÃ-SI MIRIÃ-CFM-gRS 3D-HMOF

Cycle Time
Cycle

Time

Cycle

Time

Latency

Time

Latency

Time

D-SET-flip-flop 13.7 7.4 10.8 6.4 15.2

Biu-fifo 12.3 8.5 12.9 8.5 16.6

Biu-fdma 13.4 8.0 13.8 9.9 19.0

Diffeq-alu2 11.6 8.7 14.3 9.1 19.5

D-DET-flip-flop 13.7 7.8 13.2 8.0 15.4

JK-SET-flip-flop 14.4 7.6 11.3 7.6 17.5

JK-DET-flip-flop 10.7 8.1 13.2 9.0 27.8

Sbuf-send-pkt2 6.0 7.4 10.4 6.8 13.3

Scsi-init-send 14.0 8.0 12.9 7.9 19.8

Scsi-targ-send 12.3 8.9 13.8 8.1 23.2

Select2ph 8.2 8.1 13.2 8.9 15.4

Selmerge-2ph 9.4 8.1 14.0 8.1 19.8

T-SET-flip-flop 13.6 7.5 11.1 **** ****

T-DSET-flip-flop 11.9 7.7 13.2 8.0 13.3

 

VII. CONCLUSION 

       In this paper the theory from Nowick of hazard-free 

logic minimization of an XBM function was extended 

to accomplish the logic minimization of a SI_XBM 

function that interacts with the external environment in 

Ib/Ob mode (SI_XBM controllers). A variant of the 

architecture from [20] was proposed, called feedback 

RS standard that relaxes the covering conditions of an 

SI_XBM function. The ATACS Algorithm, that is exact 

in number of literals (state-of-the-art), was modified to 

satisfy the theory of the logic minimization of the 

SI_XBM function and to be suitable to the proposed 

architecture. In order to validate the algorithm, it was 

applied to a set of experiments/benchmarks, showing 

relevant results, which can be easily extended to high 

complex military applications, as the embedded systems 

actually existing in aircrafts, battle ships and Army’s 

vehicles.  
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