
Two-Level Hazard-Free Logic Minimization of

 Speed-Independent Extended Burst-Mode Controllers

Duarte L. Oliveira and Lester A. Faria
Divisão de Engenharia Eletrônica do Instituto Tecnológico de Aeronáutica – ITA – IEEA – SJC – SP – Brazil

Abstract Several algorithms of hazard-free logic

minimization were proposed for extended burst-mode

asynchronous controllers that operate in the generalized

fundamental mode (GFM) and accept the so-called

extended burst-mode (XBM) Specification. This class of

controller’s shows to be very interesting because the XBM

specification allows describing a wide range of circuits,

from complex asynchronous interfaces to Moore-type

synchronous controllers that operate in the two edges of

the clock signal. Another interesting class of asynchronous

controllers is the speed-independent (SI) ones. They are

more robusts, more modulate and easy to be verified,

when compared with GFM XBM counter-parts.

Considering and conjugating the advantages provided by

both approaches, in this paper we propose an algorithm

for hazard-free logic minimization, exact in the number of

literals, for SI asynchronous controllers that starts from

the XBM specification, being highly suitable for the

implementation on high accuracy, robust and complex

systems, like the ones actually embedded in military

systems and platforms. The proposed algorithm has been

successfully applied to a set of known benchmarks

showing good and potential results for practical

implementation.

Key-words –– finite state machine, asynchronous logic,

hazard, XBM specification

I. INTRODUCTION

 Currently, a considerable interest has been given to

asynchronous design [1] due to the increasing

complexity of digital systems and the need for the

improvement of their performance. An important

component in the asynchronous design is the

asynchronous controller. One class of asynchronous

controllers is asynchronous finite-state machines,

originally proposed by Huffman [1], as well as their

extensions, that accept a specification called (extended)

burst-mode (XBM/BM) [2]-[5]. These controllers

operate according to the bounded gate and wire delay

model and interact with the environment in the

generalized fundamental mode (GFM), where transition

from stable states can occur both for single or multiple

input and output changes. The XBM asynchronous

controllers are an interesting class of controllers

because the XBM specification allows describing a

wide range of controllers, from complex asynchronous

interfaces to synchronous ones that operates in the two

transitions of the clock signal (heterogeneous systems).

Duarte L. Oliveira, duarte@ita.br, Tel +55-12-3947-6813, Fax +55-

12-3947-6930; Lester A. Faria, lester@ita.br

In recent years, there have been a number of successful

and efficient real-life asynchronous circuits designed as

extended burst-mode asynchronous controllers [6].

In contrast, Speed-independent (SI) asynchronous

controllers [7,8] are also attractive, because they can be

proven correct and tolerate delay variations, resulting

from technology migration or temperature variations.

These controllers work correctly regardless of the

delays of the individual gates, while assuming constant

wire delays for multiple fanouts [8]. As a result,

achieving speed-independent circuits avoids the need

for timing assumptions and delays lines that tend to

increase area and reduce the reliability of the circuit

(hazard-free essential). Speed-independent modules can

thus easily be replaced whenever a faster or more

advanced technology is introduced. In addition, speed-

independent controllers have a so called “testability

advantage”, once they are self-checking with respect to

output stuck-at-faults [8].

 An important step in the synthesis process of

(extended) burst-mode and SI controllers is the logic

minimization. In this case, it must be considered that:

a) Hazard-free logic minimization, targeting

(extended) burst-mode controllers operating in the

GFM, has been pursued by different authors [9]-[14].

Initially, Nowick et al. [9] proposed an algorithm based

on Quine-McCluskey. Posteriorly, the HFMIN

minimization tool [10], although being literal-exact,

showed to require thousands of seconds when dealing

with large controllers. Furthermore it is not able to

complete the largest benchmarks [11]. The IMPYMIN

minimization tool [12] is only capable of producing

product-exact solutions. The ESPRESSO-HF

minimization tool [12] uses heuristic algorithms and

thus cannot guarantee either literal or products exact

solutions. These logic minimization tools are used in

two burst-mode synthesis tools: 3D (HFMIN) [4,5], that

synthesize extended burst-mode controllers (target

architecture – Extended Huffman Machine - M_HE)

from an XBM specification; and MINIMALIST

(HFMIN, IMPYMIN and ESPRESSO-HF) [2],[10],[12]

that synthesize burst-mode controllers (target

architecture – Huffman Machine - M_H) from a burst-

mode specification (BM). Jacobson et al [11] proposed

a new minimization tool that performs literal exact

hazard-free solutions for extended burst-mode

controllers (ATACS). This approach can handle large

circuits in a reasonable time (less than thousands of

seconds). An extension of the ATACS algorithm

(inserted in the Miriã synthesis tool) was proposed for

multi-burst-mode asynchronous controllers (target

architecture – Generalized SR latch - gRS) that also

Rodrigo
logo

LAB-GE
Text Box
ISSN:1983 7402 ITA, 29 SET a 01 OUT de 2015

Rodrigo
Typewriter
95

mailto:duarte@ita.br
mailto:lester@ita.br

operate in the GFM [13,14].

b) Hazard-free logic minimization, targeting SI

controllers, has been proposed by Beerel [8,15] and

Kondratyev [16]. These logic minimization tools are

used in two SI synthesis tools: SYN (use an initial

version of ATACS) [15], that synthesizes in an

architecture denominated standard C, that uses the C

latch and basic gates; and PETRIFY (ESPRESSO-

MC) [16,17], that synthesize either non-standard C or

standard RS architectures. These methods start from the

state graph specification, introduced by [7], and are

based on similar theories for the extraction of Fset and

Freset functions (hazard-free logic minimization step).

There is one important drawback in the logic

minimization: SG specification grows exponentially

with the number of signals, what limits its applicability

to small or medium size controllers. To avoid the

explosion of states of the SG specification, the

PETRIFY tool presents some alternatives, for example,

the method of structural logic minimization [18], that

extracts the Boolean functions directly from the Petri-

net specification, so called signal transition graph

(STG), also introduced by [7].

 Other hazard-free logic minimization techniques

were proposed, focusing on other goals. For example,

Nowick et al. [19] proposed a multi-level minimization

algorithm for burst-mode controllers. In [20], it is used

a synchronous technology mapping technique for the

design of generalized fundamental mode asynchronous

circuit in the multi-level style. In [21]-[23] some

techniques are proposed for logic minimization in the

dual-rail style.

 In this paper, the hazard-free logic minimization

theory previously proposed by Nowick and Yun [2]-[5]

is extended, and applied in a new tool of hazard-free

logic minimization, suitable for speed-independent

extended-burst-mode asynchronous (SI_XBM)

controllers. These controllers are implemented in the

Feedback RS Standard (FRS) architecture (see Fig. 1).

This architecture (in the case, the feedbacks) allows

relaxing the SI logic minimization conditions. This tool

uses an intermediate data structure based on cubes,

therefore allowing extracting Booleans functions of the

SI_XBM controllers with a large number of signals.

The proposed logic minimizer is based on the ATACS

algorithm [11]. The resulting circuits, once conjugating

and taking advantages of both approaches (“speed-

independent” and “extended-burst-mode asynchronous”

controllers) shows to be highly suitable for

implementation on high accuracy, robusteness and

complex systems, like the ones actually embedded in

military systems and platforms.

LSS, TSS, State-var, Output

FRESET

FSET
Output

State-var

Fig. 1. Feedback RS standard architecture.

II. EXTENDED BURST-MODE SPECIFICATION

 The Burst-Mode specification was proposed by a

group from HP, formalized by Nowick [2] and extended

by Yun [3]-[5]. Figure 2 shows an extended burst mode

specification with 4 inputs (a,b,c,d), 3 outputs (x,y,z)

and a initial state 0. The signals b, c and d are signals

that are sensitive to transition (TSS). The description

bd/y in state transition 8 means that the output (y:

10) will follow the input burst (b: 10 AND d:

10). The level sensitive signal (LSS) a is used to

describe the mutual exclusion between state transitions

2 and 3. The directed don’t care signal b
*
, in state

transitions 6 and 7, means that b may either change its

value or remain in its old value. In all state transition, it

should have, at least, a signal denominated

“compulsory”. A compulsory signal is an input signal

that, in the previous state transition, is not directed

don't-care.

5

43

1

0

2

6

b- d- / y-

8

b* d+ / x- y+
7

b* c- / y-

c+ / x+1

6
<a+>

b+ / y+

3

 <a->

b+ / x- z+

2

4

5

c- / y+

b- / y- z-

Fig. 2. Extended Burst-Mode (XBM) Specification.

 The SI_XBM controllers interact with the external

environment through a handshaking protocol. This

protocol allows translating the XBM specification to

operations of input burst/output burst, Ib/Ob mode, in

which a new input burst is accepted as soon as an

output burst transition has finished (any timing

supposition of the fundamental mode). This mode is a

simplification of the I/O mode [1],[13],[14]. For the

Ib/Ob operation mode, two more restrictions are

required:

 The output burst must never be empty. If this

happens in the original behavior, an

acknowledgement output signal must be added.

 LSS signals must become stable during the

previous state. The value of a LSS must be

constant in the state transitions, where it is

mentioned. This condition eliminates the existing

restrictions of the setup time and hold time.

III. SPEED-INDEPENDENT CONDITIONS

 In this section, we formally present the conditions

when a non-input signal of the XBM specification can

be implemented in the target architecture. For the

synthesis of SI controllers, using only basic gates with

arbitrary fan-in and not needing complex gates, the

Lemma 1, presented below, should be satisfied.

Lemma 1: (without proof). Two sufficient conditions

for the implementation of the SI circuits with basic

gates and Hazard-free logic are:

1. The circuit does not have an achieved state, which

is covered for more than one cube.

2. The achieved states of the circuit that form the

Rodrigo
logo

LAB-GE
Text Box
ISSN:1983 7402 ITA, 29 SET a 01 OUT de 2015

Rodrigo
Typewriter
96

sequence of events (0→1...→0) or (1→0...→1) of a

non-input signal should enable only a cube.

 Lemma 1 explicits the conditions for any

architecture related to SI circuits, where the cubes are

implemented by basic gates. The Huffman machines

and their extensions (in a general application) do not

satisfy any of the two conditions of the lemma 1. The

theory of hazard-free logic minimization for XBM

functions (fGFM-XBM), proposed by Nowick and Yun, is

extended to satisfy the lemma 1, where the function

fSI-XBM is implemented in the feedback RS architecture

(FSET-SI-XBM and FRESET-SI-XBM). The logic set (FSET-SI-

XBM) and logic reset (FRESET-SI-XBM) are both

implemented as sum-of-products circuits. The

feedbacks of this architecture relax the condition 2 of

the lemma 1 for the transitions 11 and 10, when

the function is FSET-XBM-SI; and for the transitions 00

and 01, when the function is FRESET-XBM-SI.

A. Required and privileged cubes

 Nowick [2,9] created the concept of transition cube,

which was generalized by Yun [3]-[5]. This cube

(CT[A,B]) contains all the possible minterms that can

be reached during the activation of the input burst/

output burst of a state transition, where A is an initial

cube and B is a final cube. Figure 3b shows the

generalized transition cube of the state transition 7 (see

Fig. 3a) of the Fig. 1. In Fig. 3b, the cube CT[A,B] is

formed by the initial cube A that is bcdaxyz=2022100

and for the final cube B that is bcdaxyz=2022220,

where 2 means don't-care. The end-subcube B' (cover

the final state) is bcdaxyz=2012010.

b*d+/x-y+

Initial

cube

A

b d

x y

c=0 z=0

00 01 11 10

00

01

11

10

00

01

11

10 10 1001 01

01 01

01 01

01

01

01

01

01 01

01

01

01

01

1010

4 4

5

5

4 4

End-subcube B’

a=0

a=1

Final cube B

4

5

(a)

(b)

Fig. 3. Generalized transition cube

 Nowick [2,9] created the concepts of “required

cube” and “privileged cube”, necessary for the

development of an algorithm of hazard-free logic

minimization.

Definition 1: Required Cube. Be a function fSI-XBM and

a set T of functional hazard-free transitions that are

specified in fSI-XBM. The cube CTj[A,B]T that

corresponds to the transitions 0→1 or 1→0, the final

cube B is called a “required cube” of the type CR-SET

and CR-RESET, respectively.

Definition 2: Privileged Cube. Be a function fSI-XBM

and a set T of functional hazard-free transitions that are

specified in fSI-XBM. The cube CTj[A,B] T that

corresponds to the transitions 0→1 or 1→0, it is called

of privileged cube of the type CP-SET and CP-RESET,

respectively.

B. Requirements for logic hazard-free XBM_SI

transition

 If a Boolean function fSI-XBM contains a functional

hazard for some transition of the inputs, then no

implementation of the function guarantees to avoid

spurious signals (glitches) during this transition.

Therefore, to minimize the function fSI-XBM, a set of

transitions T should be functional hazard-free. The

requirements (lemmas) to assure that the function

fSI-XBM, implemented in the feedback RS standard latch

architecture (functions FSET-SI-XBM- and FRESET-SI-XBM), is

logic hazard-free is presented here.

Lemma 2: (without proof) If fSI-XBM presents a

transition Ti 0→0 in the cube CTi[A,B], then FSET-SI-XBM

is logic hazard-free because there is no covering.

Lemma 3: (without proof) If fSI-XBM presents a

transition Ti 0→1 in the cube CTi[A,B], then FSET-SI-XBM

is logic hazard-free if and only if: a) there is a unique

product pi FSET-SI-XBM that covers completely the final

cube B; b) it does not exist a product pj FSET-SI-XBM,

where ij such that pipj.

C. Logic hazard-free SI_XBM covering

 In this section it is presented the sufficient

conditions for a hazard-free covering of a function

fSI-XBM with a set of specified transitions T. The function

fSI-XBM is indefinite for all the other state inputs that are

not specified. For the function FSET-SI-XBM, the

transitions 11 and 10 of the function fSI-XBM, the

states with value 1 have a don't-care behavior.

Definition 3: Illegal Intersection. Be the function

FSET-SI-XBM implemented in the feedback Set-dominant

latch architecture; a set T of functional hazard-free

transitions specified in fSI-XBM; a privileged cube CP-SET

of fSI-XBM of transitions Tj T; and a product p of

FSET-SI-XBM. An illegal intersection in fSI-XBM (pCP-

SET) happens if, and only if, the transition Tj is 0→1

and p doesn't cover completely the required cube of Tj.

Theorem 1: (without proof) SI_XBM hazard-free

covering. The function FSET-SI-XBM is a hazard-free

covering for the function fSI-XBM with a set of transitions

T in the Feedback RS Standard architecture if, and only

if:

1. No product of FSET-SI-XBM intersects the set OFF of

fSI-XBM.

2. Each required cube of fSI-XBM should be contained in

a unique product of FSET-SI-XBM.

3. No product of FSET-SI-XBM intersects any privileged

cube illegally.

IV. SI_XBM LOGIC MINIMIZATION ALGORITHM

 Logic minimization follows the state minimization

and the state assignment steps [1],[2]-[5]. The algorithm

proposed for SI_XBM logic minimization is based on

the ATACS algorithm [11] (exact two-level - state of

the art) and denominated in this article as

Rodrigo
logo

LAB-GE
Text Box
ISSN:1983 7402 ITA, 29 SET a 01 OUT de 2015

Rodrigo
Typewriter
97

ATACS_FSD-SI. Firstly it transforms the XBM

specification into a cubes table [11]. The ATACS_FSD-

SI algorithm that follows performs mainly six steps:

1. Trigger cubes extraction.

2. Context signals extraction.

3. Intersection cubes extraction.

4. Violation cubes extraction.

5. Minimum cover: binate table.

6. Minimum cover: unate table.

 These steps are performed twice for each non-input

signal (output signal and state signal): one for its

FSET-SI-XBM (F_S) and one for the FRESET-SI-XBM (F_R)

(the target architecture adopts feedback RS standard

cell for each non-input signal – see Fig. 1).

A. Extraction of the trigger cubes and context signals

Definition 4: Trigger signal. Be a state transition TJ

and a input signal X that belong to XBM specification.

The signal X is denominated a trigger signal in the

transition TJ if, and only if, it is active in TJ and his

value is non-directed don't-care.

Definition 5: Trigger cube. Be a state transition TJ

XBM specification and a non-input signal Y XBM,

where Y is active in TJ. It is called trigger cube

[CgFSET(Y)J or CgFRESET(Y)J] in TJ, the cube that is

composed by the values of all of the trigger signals in

TJ, adding don’t-care values for the other signals.

Definition 6: Context signal. Be a state transition

TJXBM specification, the cube CTJ[A,B] and a signal

XXBM. The signal X is denominated a context signal

in the transition TJ if, and only if, his value stays

constant in CTJ [A,B].

The algorithm firstly finds the required cube that

covers the F_S (For the sake of reading simplicity we

will always refer to the F_S function. However the

reader should keep in mind that the same procedure

also applies for the F_R) of each non-input signal for

each state transitions of the XBM, where it is active

(F_S is active whenever there exists a 01 transition.

F_R is active whenever there exists a 1→0 transition).

In order to obtain a minimum cover for F_S, the

algorithm proceeds the determination of the trigger

cubes and context signals (steps 1 and 2). This cube

constitutes an initial (non-minimized) cover for F_S.

The context signals are later used to remove possible

violations of this initial cover. By definition, the trigger

cube covers completely the required cube of the

respective state transition and therefore satisfies lemma

3.

As illustration, in state transition 3 of Fig. 2, there

is a trigger cube: CgFSET-T3(Y) bcdaxyz=1222222,

where b=1 is a trigger signal. The context signals in this

state transition are c=1, d=0, a=1, x=1 and z=0 (this

may be seen observing the XBM description in Fig. 2)

B. Extraction of the violation and intersection cubes

 Each trigger cube can have two types of violations:

covering and intersection violations. The steps 3 and 4

of our algorithm are executed if there are one or both of

these violations.

Definition 7: Covering Violation. Be a state transition

TJXBM specification; and CgTJ-X a trigger cube of TJ

of the non-input signal X of the function fSI-XBM (F_S or

F_R). A “covering violation” of the CgTJ-X happens if,

and only if, there is, at least, a minterm of CgTJ-X where

the signal X has an opposite value (0 or 1).

Definition 8: Intersection Violation. Be a state

transition TJXBM specification; and CgTJ-X the trigger

cube of TJ of the non-input signal X of the function

fSI-XBM (F_S or F_R). An “intersection violation” of the

CgTJ-X happens if, and only if, there is an illegal

intersection among a privileged cube Cp and CgTJ-X (see

definition 3.3).

Definition 9: Violation cube is a cube formed by the

group of adjacent minterms of the “covering violation”

of a trigger cube Cg.

Definition 10: Intersection cube is a cube formed by

the group of adjacent minterms obtained by the

“intersection violation” among a privileged cube Cp and

a trigger cube Cg.

 There are two types of violations. Cover violations

occur when the initial cover (trigger cube) covers states

where the F_S is defined to have the opposite value

(violation cubes). Intersection violations occur when the

initial cover (trigger cube) violates the lemma 3. The

intersections between a required cube and a trigger cube

are called intersection cubes. Both, violation and

intersection cubes, must be removed from the initial

cover

C. Covering tables

 In this section, it is presented the solution of the

binate and unate tables. Step 5 consists of extracting the

cubes denominated trigger-FV cubes (free from

violations), which generates a problem of binate

covering [24]. These cubes should satisfy lemma 3.

Definition 11: Trigger-FV cube. Be a state transition

TJ XBM; and CgTJ-X a trigger cube of TJ of the non-

input signal X of the function fSI-XBM (F_S or F_R). It is

called a CgTJ-X of trigger-FV cube (CgTJ-X-FV – free-

violations) if, and only if, there are not covering and

intersection violations.

 If the trigger cube of a transition TJ is not FV, then

there is some type of violation, being necessary the

insertion of appropriate context signals of TJ in order to

have this violation eliminated. The lines of the binate

covering table for CgTJ-X are the context signals of TJ,

while the columns are the violation and intersection

cubes that are contained in the CgTJ-X. The solution of

the minimum coverage of the binate table leads to

finding one or more minimum trigger-FV cubes

(smaller number of context signals - CgTJ-X-MIN) that

cover (required cubes) the largest number of state

transitions and satisfies lemma 3. To obtain the

minimum coverage of the binate table, ATACS_FSD-SI

Rodrigo
logo

LAB-GE
Text Box
ISSN:1983 7402 ITA, 29 SET a 01 OUT de 2015

Rodrigo
Typewriter
98

uses classic reduction techniques [24], the branch and

bound algorithm for cyclical binate tables [24].

 After extracting all the minimum trigger-FV cubes

for all transition TJXBM specification, where the non-

input signal X is activated for the function fSI-XBM (F_S

or F_R), a unate covering table is built, where the lines

are the minimum trigger-FV cubes and the columns are

the state transitions (required cubes) of the non-input

signal X of the function fSI-XBM (F_S or F_R). The

solution for minimum covering of the unate table (step

6) leads to finding the smallest number of minimum

trigger-FV cubes that cover all state transitions

(required cubes), where X is 01 (F_S) or 10 (F_R),

and that satisfy the theorem 1 To obtain the minimum

coverage of the unate table, ATACS_FSD-SI uses

classic reduction techniques, the branch and bound

algorithm.

V. EXAMPLE

 We will illustrate the ATACS_FSD-SI algorithm

through the example shown in Fig. 2. Figure 4 shows

the context signals, trigger cubes, and required cubes

for Y_SET (Y+). Figure 5 shows the binate tables of

the trigger cubes (state transitions 3 and 4, in the Fig.

2). The trigger cube of the state transition 7 is FV,

because there were not violations or intersections cubes.

The exact minimum solutions for the binate tables are

respectively the cubes 1121122 and 1022221. For

example, the trigger_FV cube 1121122 was generated

inserting the values of the context signals (c, a and x in

the binate table) into the trigger cube. Figure 6 shows

the corresponding unate table. Observe that it only

contains state transitions 3, 4 and 7 (transitions where

the output signal transition is Y 0→1). The exact

minimum solutions are the three cubes in the unate

table. The cube bcdaxyz=1121122 describe the term

product bcax.

 Figures 7, 8 and 9 show the same steps, but now for

the function Y_RESET (Y). This example needs a

feedback in the product terms that contain the signal a

(LSS), as shown in Fig. 10.

Y+ /7

Y+ /4

Y+ /3

Context Trigger

2101120 1222222

1202021 2022222

2022220 2212222

Required

2012220

1002021

1101120

Fig. 4. Context, trigger and required cubes for Y_SET.

Y_SET/3 10122201100202 1102001 1002120

c

d

0

0

1

0

0

00

1

0

1

1

0a

0 1 0 0

0 1 0 0

Y_SET/4 0002022 2002120

b

x

1

1

0

0

z 0 1

x

z
Fig. 5 Binate cover tables from Y_SET.

Y_SET

1121122

1022221

2212222

1101120 1002021 2012220

1

0

0

0 0

01

10

Fig. 6. Unate cover table from Y_SET.

Out/Tran

Y- / 8

Y- / 6

Y- / 5

Context Trigger

2002022 0222222

2202120 2022222

2022020 0202222

Required

0002020

2002120

0002022

Fig. 7. Context, trigger and required cubes for Y_RESET.
Y_RESET/5 Y_RESET/80102110 0012220 0002120

1

0

1

0

0

01

0

1

1002021 2012220 1022010

0

1

1

1

0

10

0

0z

(a) (b)

(c)

0102110 0002120

1

1

0

1

Y_RESET/6

c

d

x

c

x

d

x

Fig. 8. Binate cover tables from Y_RESET.

Y_RESET

0202022

2002122

0002022 2002120 0002020

1

0

0 1

01

Fig. 9. Unate cover table from Y_RESET.

Freset

a b c d

Freset

Fset

Fset

Z

Y

X

Fig. 10. Logic circuits.

VI. RESULTS

 We applied our logic minimization tool in 14

different benchmarks, specified in XBM specification.

The proposed logic minimization tool is named Miriã-

SI. Table I shows the XBM specification of the 14

benchmarks. The specification is given in terms of the

number of states, number of state transitions (St/Tran),

number of inputs and number of outputs (I/O). Table I

also shows the area (number of literals – N-Lit and

number of gates – N-gate) obtained by the tools: Miriã-

SI, Miriã-GFM-gRS [13,14] and 3D-HMOF (Huffman

Machine with output feedback) [4,5]. The Miriã-SI

results were 20% smaller in literals and 20% smaller in

gates (The latch (complex gate – to see Fig. 1) was

esteemed as a simple gate) when compared with 3D.

There was an increase of literals (20%) and gates

(10%), compared to Miriã-GFM.

 Table II shows, for the same set of 14 benchmarks,

the cycle time and latency time of the circuits obtained

by the three compared tools. The latency and cycle

times were obtained assuming a gate delay given by the

equations (assuming fan-out=1): tmin-gate=(0.1*fan-

in+0.9) time units and tmax-gate=(0.25*fan-in+2.1) time

units. The average latch delay was “2 time units”. For

Miriã-SI the times of cyle and latency are equals.

 Table II shows an average cycle time reduction of

35% when compared to 3D and 7% when compared to

Miriã_GFM. The average latency time penalty was 36%

when compared to both 3D and Miriã_GFM.

Rodrigo
logo

LAB-GE
Text Box
ISSN:1983 7402 ITA, 29 SET a 01 OUT de 2015

Rodrigo
Typewriter
99

 These results were obtained in less than 20 seconds

(each) when running ATACS_FSD-SI on a PC

(Windows XP, Pentium 4, 480MB RAM and 2.8 GHz).

In spite of the penalty in area and latency time, these

circuits present the advantages of being SI, as: high

modularity, higher robustness, easiness in formal

verification and testability (covering without

redundancy and self-checking property).
Table I Results: Literals and Gates

SPEC MIRIÃ-SI MIRIÃ-GFM-gRS 3D-HMOF

I / O St /Tran N-lit /N-gate N-lit /N-gate N-lit /N-gate

4/2Biu-fdma 50/30

5/7Diffeq-alu2 142/56 95/47 139/68

41/23 51/31

4/2Biu-fifo 25/15 23/19 27/20

3/1JK-DET-flip-flop 28/18 24/14 469/155 **

3/2Sbuf-send-pkt2 18/12 15/14 22/16

4/2Scsi-inic-send 33/18 23/18 23/17

2/1D-SET-flip-flop 19/13 16/11 23/28

2/1D-DET-flip-flop 28/17 24/13 33/18

3/1JK-SET-flip-flop 19/14 45/21 107/47

6/4Scsi-targ-send 81/36 70/30 72/35

2/2Select2ph 28/19 24/14 30/17

3/2Selmerge-2ph 60/29 48/25 68/31

2/1T-SET-flip-flop 19/17 16/12 ****

2/1T-DET-flip-flop 28/13 24/14 29/15

6/7

7/9

14/16

4/6

4/8

4/6

8/12

4/8

11/14

6/8

4/5

8/32

6/12

4/8

Table II Results: Latency and Cycle times

MIRIÃ-SI MIRIÃ-CFM-gRS 3D-HMOF

Cycle Time
Cycle

Time

Cycle

Time

Latency

Time

Latency

Time

D-SET-flip-flop 13.7 7.4 10.8 6.4 15.2

Biu-fifo 12.3 8.5 12.9 8.5 16.6

Biu-fdma 13.4 8.0 13.8 9.9 19.0

Diffeq-alu2 11.6 8.7 14.3 9.1 19.5

D-DET-flip-flop 13.7 7.8 13.2 8.0 15.4

JK-SET-flip-flop 14.4 7.6 11.3 7.6 17.5

JK-DET-flip-flop 10.7 8.1 13.2 9.0 27.8

Sbuf-send-pkt2 6.0 7.4 10.4 6.8 13.3

Scsi-init-send 14.0 8.0 12.9 7.9 19.8

Scsi-targ-send 12.3 8.9 13.8 8.1 23.2

Select2ph 8.2 8.1 13.2 8.9 15.4

Selmerge-2ph 9.4 8.1 14.0 8.1 19.8

T-SET-flip-flop 13.6 7.5 11.1 **** ****

T-DSET-flip-flop 11.9 7.7 13.2 8.0 13.3

VII. CONCLUSION

 In this paper the theory from Nowick of hazard-free

logic minimization of an XBM function was extended

to accomplish the logic minimization of a SI_XBM

function that interacts with the external environment in

Ib/Ob mode (SI_XBM controllers). A variant of the

architecture from [20] was proposed, called feedback

RS standard that relaxes the covering conditions of an

SI_XBM function. The ATACS Algorithm, that is exact

in number of literals (state-of-the-art), was modified to

satisfy the theory of the logic minimization of the

SI_XBM function and to be suitable to the proposed

architecture. In order to validate the algorithm, it was

applied to a set of experiments/benchmarks, showing

relevant results, which can be easily extended to high

complex military applications, as the embedded systems

actually existing in aircrafts, battle ships and Army’s

vehicles.

REFERENCES

[1] C. J. Myers, “Asynchronous Circuit Design,” Wiley & Sons,

Inc., 2004, 2a edition

[2] S. M. Nowick, “Automatic Synthesis of Burst-Mode
Asynchronous Controllers,” Ph.D. thesis, Stanford University,

1993.

[3] K. Y. Yun, “Synthesis of Asynchronous Controllers for
Heterogeneous Systems”, Ph.D. thesis, Stanford University,

1994.
[4] K. Y. Yun and D. L. Dill, "Automatic Synthesis of Extended

Burst-Mode Circuits: Part I (Specification and Hazard-.Free

Implementation) and Part II (Automatic Synthesis)," IEEE

Trans. on CAD of Integrated Circuit and Systems, Vol. 18:2,
pp. 101-132, Feb. 1999.

[5] K. Y. Yun, et al., "The design and verification of a high-

performance low-control-overhead asynchronous differential
equation solver," IEEE Transactions on VLSI Systems, vol. 6,

no 4, pp.643-655, Dec.1998.

[6] S. Rotem, et al., "RAPPID: An asynchronous instruction
length decoder,"in Proc. International Symposium on

Advanced Research in Asynchronous Circuits and Systems,

April, 1999, pp.60-70.
[7] Tam-Anh Chu, “Synthesis of Self-Timed VLSI Circuits from

Graph-Theory Specifications,” Ph.D. thesis, June, 1987, Dept.

of EECS, MIT.
[8] P. A. Beerel, “CAD tools for the synthesis, verification, and

testability of robust asynchronous circuits,” Ph.D. dissertation,

Stanford University, August, 1994.
[9] S. M. Nowick e D. L. Dill, “Exact Two-Level Minimization of

Hazard-Free Logic with Multiple-Input Changes,” IEEE Trans.

on CAD of Integrated Circuits and Systems, Vol. 14, no 8,
August 1995.

[10] R. M. Fuhrer, “Sequential Optimization of Asynchronous and

Synchronous Finite-State Machine,’ Ph.D. thesis, Department
of Computer Science, Columbia University, 1999.

[11] H. M. Jacobson and C. J. Myer, “Efficient algorithms for exact

two-level hazard-free logic minimization,” IEEE on Trans.
CAD of integrated Circuits and Systems, vol.21, no.11, pp

1269-1283, November, 2002.

[12] M. Theobald and S. M. Nowick, “Fast heuristic and exact
algorithms for two-level hazard-free logic minimization”, IEEE

Trans. on Computer-Aided Design, vol. 17, no 11, pp. 1130-

1147, Nov. 1998.
[13] D. L. Oliveira, M. Strum et al., "Modified ATACS algorithm

for the logic minimization of multi-burst-mode asynchronous

controllers," Proc. VIII Workshop Iberchip, Cartagena,
Colômbia, (mídia eletrônica), March, 2004.

[14] D. L. Oliveira, et al., ‘Miriã: a CAD tool synthesize multi-burst

controllers for heterogeneous systems,” Microelectronics
Reliability, 43 (2003) 209-213.

[15] P. A. Beerel, C. J. Myers and T. H. Meng, “Covering

Conditions and Algorithms for the Synthesis of Speed-
Independent Circuits,” IEEE Trans on CAD of Int. Circuits and

Systems, vol.17, no.3, March, 1998.

[16] A. Kondratyev, M. Kishinevsky and A. Yakovlev, “Hazard-
Free Implementation of Speed-Independent Circuits,” IEEE

Trans. CAD of Int. Circuits and Systems, vol.17, no. 9,

September, pp. 749-771, 1998.
[17] J. Cortadella, et al., ‘Petrify: a tool for manipulating concurrent

specifications and synthesis of asynchronous controllers,”

IEICE Trans. on Information and Systems, E80-D(3), pp.315-

325.

[18] E. Pastor, J. Cortadella, A. Kondratyev and O. Roig,

“Structural methods for the synthesis of speed-independent
circuits,” IEEE Trans. CAD, vol 17, pp. 1108-1129, November,

1998.
[19] S. M. Nowick, C. W. O’Donnell, “On the Existence of Hazard-

free Multi-Level Logic,” Proc. IEEE Ninth Int. Symposium on

Asynchronous Circuits and Systems, 2003.
[20] F. Shi, Removing hazards in multi-level logic optimization for

generalized fundamental-mode asynchronous circuits”, IEEE

International Conference on Computer Design, pp.640-645,
2008.

[21] J.Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou,

“Coping with the Variability of Combinational Logic Delays,”
IEEE Int. Conf. On Computer Design, pp.505-508, 2004.

[22] I.Lemberski, “Method of Asynchronous Two-Level Logic

Implementation,” IAENG International Journal of Computer

Science, 35:1, IJCS_35_1_09 19, February 2008.

[23] I.Lemberski, and P. Fišer, “Asynchronous Two-Level Logic of

Reduced Cost,” IEEE Symposium on Design and Diagnostics
of Electronic Circuits and Systems, pp. 68-73. April 15-17,

Liberec, Czech Republic, 2009.

[24] O. Coubert and J. C. Madre, "New ideas for solving covering
problems," Proc. 32th ACM/IEEE DAC, pp.641-646, 1995.

Rodrigo
logo

LAB-GE
Text Box
ISSN:1983 7402 ITA, 29 SET a 01 OUT de 2015

Rodrigo
Typewriter
100

