
 

An Asynchronous Implementation of Cryptographic 

Algorithm using High-Level Automatic Synthesis 
 

  Kledermon Garcia
1,2

, Duarte L. Oliveira
1
, Lester A. Faria

1
, Higor A. Delsolto

1
, Leonardo Romano

3 
 

1Electronic Engineer Division – Technological Institute of Aeronautics – ITA – IEEA  
2Aeronautical Systems Division – Institute of Aeronautics and Space – IAE - DCTA  

3Electrical Engineer Department – University Center of FEI 

 

 

Abstract  Currently, digital systems that are able to meet 

major security restrictions are increasingly being demanded, 

both in the military and in commercial areas. Data security can 

be achieved by cryptographic algorithms, which are subject to 

attacks, often using the clock signal to reveal the secret data. 

To deal with this major problem, the asynchronous paradigm 

presents interesting features, due to the lack of the clock signal, 

being an option for the project of digital systems. In this paper, 

we propose a bundled-data architecture to implement an 

asynchronous cryptosystem. The cryptographic algorithm was 

chosen based on its simplicity and is called TEA (Tiny 

Encryption Algorithm). For its implementation, it was 

considered FPGAs (Field Programmable Gate Array) devices 

as target platforms.  Compared to synchronous designs, the 

asynchronous ones, besides being more robust, presented a 

reduction in the latency time of up to 15% and in power 

dissipation of up to 11.9%. 
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I. INTRODUCTION 
 

    In recent decades, there is a strong demand for digital 

systems that ensure the confidentiality of information, 

whether in processing or data storage. As examples, we have 

the purchasing activities on Internet, banking, etc., which 

require transmission security and sensitive data storage. The 

design of a digital system, meeting these security 

restrictions, demands communication protocols and the use 

of encryption methods. These methods are based on the 

arithmetic, and focus on hiding data. Currently, there is also 

a concern on the inclusion of "traps" in digital SoC (System-

on-Chip) systems design, especially for military purposes 

[1].  

    Despite the encryption algorithms, implemented in SoCs, 

seek to be robust to the attempting of breaching confidential 

data, there is a number of techniques that demonstrate, 

through physical properties, that is possible to reveal the 

secret processed data [2,3]. This class of techniques is 

known as Side Channel Attacks – SCA, which extracts 

sensitive information based on physical features, such as 

power consumption, electromagnetic radiation, processing 

time, etc., allowing discovering the information protected by 

encryption. These attacks seek to establish a relationship 

between the analyzed physical features and the processed 

data.  
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A cryptographic system typically uses a “word”, called 

secret cryptographic key, which affects its efficiency. In 

modern cryptographic systems, knowing the key is 

equivalent to be able to perform operations on the encrypted 

system. Different encryption algorithms have been proposed 

to raise the reliability of data security, such as the RSA 

algorithm (Rivest Shamir Adleman) [4], TEA (Tiny 

Encryption Algorithm) [5], AES (Advanced Encryption 

Standard) [ 6] and DES (Digital Encryption Standard) [7]. 

SoC systems focused on security are often embedded, thus 

following the constraints of the embedded design, such as 

reduced power dissipation, high level of integration, critical 

performance, etc. The SoC system design is based on the 

reuse of technical pre-designed and pre-validated 

components, called IP (Intellectual Property Core) cores [8], 

in order to reduce design time and cost. Different SoCs can 

be found in areas such as remote sensing [9], processing of 

secure data [10], etc.  

      SoC systems are traditionally designed in synchronous 

paradigm, i.e. they use a global clock to synchronize their 

operations. They are quite popular due to their simplicity of 

design and availability of commercial CAD tools for 

automatic synthesis. In DSM-MOS (Deep-sub-Micron MOS) 

technology, a clock signal requires major attention due to its 

noise generation, electromagnetic interference and power 

consumption [11]. Besides these factors, the distribution of 

the clock signal along the chip is a task with increasing 

complexity due to clock skew problems, which decrease the 

system performance. The overhead caused by the clock 

signal can reach up to 130% in a VLSI (Very Large Scale 

Integration) implementation [12] and is even worse when 

FPGAs (Field Programmable Gate Array) are employed. 

Beside all these problems, the analysis techniques of 

encrypted systems, seeking to reveal the data, use the clock 

signal as the main analysis parameter. 

 

      The asynchronous design shows to be an alternative and 

an interesting paradigm, once it eliminates some problems 

of the synchronous approach. Asynchronous circuits operate 

“by events” and the synchronization is achieved by local 

handshake signals rather than by a global clock. Therefore, 

the concerns associated with global clock are eliminated. 

However, asynchronous circuits are difficult to design. 

Besides the lack of CAD tools for an automatic synthesis, 

they should also be free of hazard and of critical race [13].  

Different styles have been proposed for behavioral synthesis 

of asynchronous systems [14-19]. These styles can be 

categorized into two classes: a) direct translation syntax 

[16]; b) optimized synthesis [18,19]. 
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      Methods for direct translation syntax, despite of the 

recent efforts of using re-synthesis technique for better 

optimization, is already limited [17]. On the other hand, the 

optimized synthesis follows the traditional steps of 

behavioral synthesis (synchronous paradigm), such as 

scheduling, registers and functional units assignment, etc. 

[20]. 

    Different proposals have been made for the 

implementation of cryptographic systems, aiming at a 

greater reliability facing to attacks. We can cite the 

implementations in the GALS (Globally-Asynhronous 

Locally-Synchronous) paradigm, proposed by Spadavecchia 

[21] and by Soares [22], aiming at DES and AES 

algorithms, which show a great performance. The GALS 

architecture allows operating with multiple clocks, which 

hampers the SCA. In this paper we propose an asynchronous 

architecture, based on a bundled-data implementation, in the 

decomposition style. It was obtained by optimized automatic 

behavioral synthesis, previously proposed by Garcia [19] 

and that is focused on FPGA devices, harming SCA due to 

its asynchronous nature. Comparing it with synchronous 

designs, there was a reduction in the latency time and in 

power dissipation of up to 15% and 11.9%, respectively. 

 

II. AUTOMATIC SYNTHESIS OF ASYNCHRONOUS SYSTEMS: 

OVERVIEW 
 

     The optimized behavioral synthesis can be directed to the 

asynchronous pipeline style or to the "decomposition" style, 

also known as division or sharing resources. It is very 

familiar to designers, allowing high optimization and 

addressing “intensive control” applications. Many proposals 

for these two styles have been made focusing on Bundled-

data Implementation [15,18,19]. In bundled-data, the 

transferring of N data bits can be represented by N+2 

signals, called "bundle". Each bit of data is represented by a 

single signal and the “+2” is a pair of local handshake 

signals: request (req) and acknowledge (ack). Data transfer 

starts with the req signal, and finishes with the ack signal, 

where the communication, based on the handshake protocol, 

may be in four or two phase way (Fig. 1a, b). 

Acknowledge

valid dataData valid data

Request

(a) 4 phase handshaking protocol

valid dataData valid data

Request

Acknowledge

(b) 2 phase handshaking protocol

 Fig. 1. Handshake protocol: a) 4-phase; b) 2-phase. 

 

An important architecture for asynchronous pipeline is the 

so called MOUSETRAP, and was developed by Singh et al. 

[15] (Fig. 2). This architecture operates in two phases 

handshake protocol, presents low latency time and high 

throughput. Another advantage is that its control is 

composed only by a XNOR gate and transparent D latch. 
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 Fig. 2. MOUSETRAP linear pipeline [15]. 

 

      Considering the decomposition style, there are two 

variants: 

a) Projects that use dual-rail data-path, also known as 

asynchronous data-path. The STG specification (Signal 

Transition Graph - Petri-net), proposed by Chu [23], is the 

most appropriate one to describe its controller, which will 

interact with the asynchronous data-path without the 

insertion of any delay element, allowing a high concurrency. 

The asynchronous data-path uses dual-rail components, 

which have high implementation cost; and 

b) Projects that use single-rail data-path, also known as 

synchronous data-path. The implementation is bundled-data, 

where a delay element is inserted, setting the cycle time of 

the state transition. The “Extended Burst-Mode” 

specification (XBM), proposed by Yun [24], is the most 

appropriate one to describe the controller (asynchronous 

finite state machine – AFSM), which interacts with the 

synchronous data-path (Fig. 1). We can mention, at least, 

three reasons why it is the most appropriate one: 

 i. the status variables are conditional ones, working by level 

and having a non-monotonic behavior; 

ii. the interaction between the AFSM and the data-path is 

performed by a timing discretization. The cycle times of 

different state transitions are defined with the insertion of 

delay elements, which synchronize the interaction between 

AFSM and the data-path. This process fits in the burst-mode 

operation (fundamental mode) [24]; and 

iii. the XBM specification is more familiar and more 

compact than the STG specification to the great majority of 

designers. 
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Fig. 3. General architecture: Bundled-Data asynchronous systems in the 

decomposition style. 
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III. CRYPTOGRAPHIC ALGORITHM: TEA  

  

     The TEA algorithm (Tyni Encryption Algorithm) was 

developed by Wheeler and Needhan, in 1994, and further 

expanded in [25]. It is based on the concept of symmetric 

encryption, due to the use of symmetric keys, i.e., using the 

same key to encrypt (TEA_E) and decrypt (TEA_D). The 

basic operation of the algorithm consists of additions and 

logical exclusive-OR, to generate the nonlinearity and 

logical shifts to the left and right, providing the mixture of 

data and the key. These operations are repeated several 

times, being suggested at least six iterations by the author. 

To ensure that the encryption is different after each iteration, 

it is used a constant delta, based on the golden ratio, as 

shown in (1). The value of delta ensures that the sub-keys 

will be distinct and its numerical value has no relevance to 

the quality of encryption. Figure 1 presents a diagram 

representing a cycle of the TEA algorithm. 

 

<< 4

>> 5

 Delta 

K[0]

K[1]

<< 4

>> 5

 Delta 

K[2]

K[3]

Fig. 4. Cycle of TEA algorithm of [5]. 

 

    31215 Delta                         

(1) 

 

IV. ASYNCHRONOUS IMPLEMENTATION OF TEA 

CRYPTOGRAPHIC ALGORITHM  

 

      The asynchronous design of encryption algorithms 

(TEA_E and TEA_D) follows the decomposition style and 

have been implemented in the target architecture of Fig. 3, 

using FPGA devices. 

 

A. Asynchronous implementation on FPGA 

      

     Commercial FPGAs devices have become a very popular 

way to prototype and implement digital systems due to its 

low cost and short time project [26]. They were developed 

to support synchronous designs, thus the asynchronous 

implementation is not natural [27,28]. Two main difficulties 

arise in asynchronous designs based on LUTs (Look-Up-

Table) in FPGAs involving AFSM_XBM: a) Process of 

mapping hazard-free Boolean functions in logic blocks 

(macrocells). The commercial tools used for decomposition 

and mapping Boolean functions in LUTs are not prepared to 

meet the requirements of logical hazard. This may cause a 

circuit malfunction, if manual intervention to fix the 

problem is not performed. The mapping function must 

satisfy the decomposition requirements proposed in Sigel et 

al. [29]; b) Internal routing process among macrocells can 

introduce significant delays. These delays can result in 

essential hazard and lead to a circuit malfunction [27]. The 

circuit delay model defines how to solve the problem of 

essential hazard: insertion of delay elements in the feedback 

lines or employ macrocells that satisfy the isochronic fork 

condition [13,30]. 

 

B. Asynchronous optimized design using 

decomposition style 

       

     The TEA_E and TEA_D algorithms were synthesized 

with an asynchronous behavioral synthesis tool proposed by 

Garcia [19]. The tool accepts an algorithm described in 

LASYN language (language synthesis - input file for the 

tool). Analyzing the synthesis of TEA_E algorithm, in the 

first step the tool synthesizes the optimized single-rail data-

path using only synchronous paradigm components. Figure 

5 shows the DFG (Data Flow Graph) [20] of the TEA_E 

algorithm, in which there are ten steps with a single machine 

cycle. The data-path required 5 ALUs (arithmetic logic unit), 

of which 4 ALUs have different operations, and 16 registers 

(Fig. 7). In the second step, it synthesizes the AFSM_XBM 

with Sicarelo tool [31], presenting 15 states, 16 states 

transitions, 3 input signals and 61 output signals. 
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Nó: (14) => Y + (15);

Nó: (15) => (16) ^ (20);

Nó: (16) => (17) ^ (19);

Nó: (17) => (18) + 10;

Nó: (18) => Z << 4;

Nó: (19) => Z + SUM;

Nó: (20) => (21) + 15;

Nó: (21) => Z >> 5;

Nó: (22) => (23) + 25;

Nó: (23) => (24) >> 5;

Nó: (24) => Y + (25);

Nó: (25) => (26) ^ (30);

Nó: (26) => (27) ^ (29);

Nó: (27) => (28) + 10;

Nó: (28) => Z << 4;

Nó: (29) => Z + SUM;

Nó: (30) => (31) + 15;

Nó: (31) => Z >> 5;

Nó: (32) => Y + (33);

Nó: (33) => (34) ^ (38);

Nó: (34) => (35) ^ (37);

Nó: (35) => (36) + 10;

Nó: (36) => Z << 4;

Nó: (37) => Z + SUM;

Nó: (38) => (39) + 15;

Nó: (39) => Z >> 5;

Nó: (40) => SUM + 2654435769;

Nó: (41) => N - 1;

Nó: (42) => N > 0;

Fig. 5. DFG of TEA_E algorithm. 
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V. SIMULATIONS & RESULTS  
 

The simulations and designs in the proposed synchronous 

and asynchronous styles were made for the TEA_E and 

TEA_D algorithms, and were performed in Quartus II 

software, version 9.1 [32], considering Altera STRATIX II 

(EP2S15F484C3) as target device. 

 

 

 

 

A. Simulations of synchronous and asynchronous 

designs  

Figure 7 shows the simulation of the synchronous version of 

TEA_E algorithm. The waveforms are exactly as expected 

to the TEA_E, where V0 and V1 are the inputs of both data, 

and Y1 and Z1 are the encrypted outputs. Figure 8 shows a 

simulation of the asynchronous version of TEA_E 

algorithm. The waveforms are exactly as expected to 

TEA_E, arriving to the same results of the synchronous 

version. 

 
Fig. 7. Simulation: synchronous TEA_E. 
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Fig. 8. Simulation: asynchronous TEA_E. 

 

B. Results of synchronous and asynchronous designs  

 

     Table I shows the results of synchronous and 

asynchronous versions of TEA_E algorithm. Compared with 

the synchronous version, the asynchronous proposal 

achieved an 8% reduction in processing time and a reduction 

in power loss of 11.9%. There was a penalty in area (LUTs 

+ FFs) of only 1.2%. 

Table II shows the results of synchronous and asynchronous 

versions of TEA_D algorithm. Compared with the 

synchronous version, the asynchronous proposal achieved a 

reduction of 15% in processing time and a reduction in the 

dissipated power of 12%. There was a penalty in the area 

(LUTs + FFs) of 4%. 

 
TABLE I RESULTS: ENCRYPTION ALGORITHM TEA_E 

TEA_E

Time of
Latency Number

LUTS

Macrocells

Number
Flip-Flops

1634.5ns

2074 520

4712090

1502.01ns
Proposal

Asynchronous

Synchronous

fMAX=55 MHz

Power
Dissipation

462.12mw

519.15mw

 
 

TABLE II RESULTS: DECRYPTION ALGORITHM TEA_D 

TEA_D

Time of
Latency Number

LUTS

Macrocells

Number
Flip-Flops

1.818,78ns

2054 523

4712005

1.546,01ns
Proposal

Asynchronous

Synchronous

fMAX=50 MHz

Power
Dissipation

477,00mw

541,49mw

 
 

VI. CONCLUSION 
 

     Digital systems focusing on the protection of data are 

increasingly demanded, being based on the encryption 

concept. The encryption algorithms are subject to attacks, 

which are based on the analysis of physical quantities, often 

using the clock signal to do that. In this paper we proposed 

two asynchronous implementations of TEA_E and TEA_D 

algorithms, not using the clock signal, what makes them 

more robust the SCA attacks. These algorithms have been 

implemented in the optimized FSM_XBM architectures of 

“local clock” + “conventional data-path”, which can be 

mapped onto any PLD device, without requiring any kind of 

macro-cells mapping. For future works we will propose 

TEA_E and TEA_D implementations in other architectures 

focused on FSM_XBM. 
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