

An Asynchronous Implementation of Cryptographic

Algorithm using High-Level Automatic Synthesis

 Kledermon Garcia
1,2

, Duarte L. Oliveira
1
, Lester A. Faria

1
, Higor A. Delsolto

1
, Leonardo Romano

3

1Electronic Engineer Division – Technological Institute of Aeronautics – ITA – IEEA
2Aeronautical Systems Division – Institute of Aeronautics and Space – IAE - DCTA

3Electrical Engineer Department – University Center of FEI

Abstract Currently, digital systems that are able to meet

major security restrictions are increasingly being demanded,

both in the military and in commercial areas. Data security can

be achieved by cryptographic algorithms, which are subject to

attacks, often using the clock signal to reveal the secret data.

To deal with this major problem, the asynchronous paradigm

presents interesting features, due to the lack of the clock signal,

being an option for the project of digital systems. In this paper,

we propose a bundled-data architecture to implement an

asynchronous cryptosystem. The cryptographic algorithm was

chosen based on its simplicity and is called TEA (Tiny

Encryption Algorithm). For its implementation, it was

considered FPGAs (Field Programmable Gate Array) devices

as target platforms. Compared to synchronous designs, the

asynchronous ones, besides being more robust, presented a

reduction in the latency time of up to 15% and in power

dissipation of up to 11.9%.

Keywordslogic asynchronous, XBM specification, data-path

single-rail

I. INTRODUCTION

 In recent decades, there is a strong demand for digital

systems that ensure the confidentiality of information,

whether in processing or data storage. As examples, we have

the purchasing activities on Internet, banking, etc., which

require transmission security and sensitive data storage. The

design of a digital system, meeting these security

restrictions, demands communication protocols and the use

of encryption methods. These methods are based on the

arithmetic, and focus on hiding data. Currently, there is also

a concern on the inclusion of "traps" in digital SoC (System-

on-Chip) systems design, especially for military purposes

[1].

 Despite the encryption algorithms, implemented in SoCs,

seek to be robust to the attempting of breaching confidential

data, there is a number of techniques that demonstrate,

through physical properties, that is possible to reveal the

secret processed data [2,3]. This class of techniques is

known as Side Channel Attacks – SCA, which extracts

sensitive information based on physical features, such as

power consumption, electromagnetic radiation, processing

time, etc., allowing discovering the information protected by

encryption. These attacks seek to establish a relationship

between the analyzed physical features and the processed

data.

Kledermon Garcia, kledermonkg@iae.cta.br; Duarte L. Oliveira,

duarte@ita.br, Tel. +55-12-3947-6813; Lester A. Faria, lester@ita.br;
Higor A. Delsoto, higordel@hotmail.com; Leonardo Romano,

leoroma@uol.com.br.

A cryptographic system typically uses a “word”, called

secret cryptographic key, which affects its efficiency. In

modern cryptographic systems, knowing the key is

equivalent to be able to perform operations on the encrypted

system. Different encryption algorithms have been proposed

to raise the reliability of data security, such as the RSA

algorithm (Rivest Shamir Adleman) [4], TEA (Tiny

Encryption Algorithm) [5], AES (Advanced Encryption

Standard) [6] and DES (Digital Encryption Standard) [7].

SoC systems focused on security are often embedded, thus

following the constraints of the embedded design, such as

reduced power dissipation, high level of integration, critical

performance, etc. The SoC system design is based on the

reuse of technical pre-designed and pre-validated

components, called IP (Intellectual Property Core) cores [8],

in order to reduce design time and cost. Different SoCs can

be found in areas such as remote sensing [9], processing of

secure data [10], etc.

 SoC systems are traditionally designed in synchronous

paradigm, i.e. they use a global clock to synchronize their

operations. They are quite popular due to their simplicity of

design and availability of commercial CAD tools for

automatic synthesis. In DSM-MOS (Deep-sub-Micron MOS)

technology, a clock signal requires major attention due to its

noise generation, electromagnetic interference and power

consumption [11]. Besides these factors, the distribution of

the clock signal along the chip is a task with increasing

complexity due to clock skew problems, which decrease the

system performance. The overhead caused by the clock

signal can reach up to 130% in a VLSI (Very Large Scale

Integration) implementation [12] and is even worse when

FPGAs (Field Programmable Gate Array) are employed.

Beside all these problems, the analysis techniques of

encrypted systems, seeking to reveal the data, use the clock

signal as the main analysis parameter.

 The asynchronous design shows to be an alternative and

an interesting paradigm, once it eliminates some problems

of the synchronous approach. Asynchronous circuits operate

“by events” and the synchronization is achieved by local

handshake signals rather than by a global clock. Therefore,

the concerns associated with global clock are eliminated.

However, asynchronous circuits are difficult to design.

Besides the lack of CAD tools for an automatic synthesis,

they should also be free of hazard and of critical race [13].

Different styles have been proposed for behavioral synthesis

of asynchronous systems [14-19]. These styles can be

categorized into two classes: a) direct translation syntax

[16]; b) optimized synthesis [18,19].

Rodrigo
Placed Image

LAB-GE
Text Box
ISSN:1983 7402 ITA, 28 a 30 SET de 2016

Rodrigo
Typewriter
112

http://www.computer.org/csdl/mags/dt/2011/05/mdt2011050062-abs.html
http://www.computer.org/csdl/mags/dt/2011/05/mdt2011050062-abs.html
mailto:duarte@ita.br
mailto:lester@ita.br
mailto:higordel@hotmail.com

 Methods for direct translation syntax, despite of the

recent efforts of using re-synthesis technique for better

optimization, is already limited [17]. On the other hand, the

optimized synthesis follows the traditional steps of

behavioral synthesis (synchronous paradigm), such as

scheduling, registers and functional units assignment, etc.

[20].

 Different proposals have been made for the

implementation of cryptographic systems, aiming at a

greater reliability facing to attacks. We can cite the

implementations in the GALS (Globally-Asynhronous

Locally-Synchronous) paradigm, proposed by Spadavecchia

[21] and by Soares [22], aiming at DES and AES

algorithms, which show a great performance. The GALS

architecture allows operating with multiple clocks, which

hampers the SCA. In this paper we propose an asynchronous

architecture, based on a bundled-data implementation, in the

decomposition style. It was obtained by optimized automatic

behavioral synthesis, previously proposed by Garcia [19]

and that is focused on FPGA devices, harming SCA due to

its asynchronous nature. Comparing it with synchronous

designs, there was a reduction in the latency time and in

power dissipation of up to 15% and 11.9%, respectively.

II. AUTOMATIC SYNTHESIS OF ASYNCHRONOUS SYSTEMS:

OVERVIEW

 The optimized behavioral synthesis can be directed to the

asynchronous pipeline style or to the "decomposition" style,

also known as division or sharing resources. It is very

familiar to designers, allowing high optimization and

addressing “intensive control” applications. Many proposals

for these two styles have been made focusing on Bundled-

data Implementation [15,18,19]. In bundled-data, the

transferring of N data bits can be represented by N+2

signals, called "bundle". Each bit of data is represented by a

single signal and the “+2” is a pair of local handshake

signals: request (req) and acknowledge (ack). Data transfer

starts with the req signal, and finishes with the ack signal,

where the communication, based on the handshake protocol,

may be in four or two phase way (Fig. 1a, b).

Acknowledge

valid dataData valid data

Request

(a) 4 phase handshaking protocol

valid dataData valid data

Request

Acknowledge

(b) 2 phase handshaking protocol

 Fig. 1. Handshake protocol: a) 4-phase; b) 2-phase.

An important architecture for asynchronous pipeline is the

so called MOUSETRAP, and was developed by Singh et al.

[15] (Fig. 2). This architecture operates in two phases

handshake protocol, presents low latency time and high

throughput. Another advantage is that its control is

composed only by a XNOR gate and transparent D latch.

L

a

t

c

h
Processing

L

a

t

c

h

L

a

t

c

h

L

a

t

c

h
Processing Processing

Ao

Ro

Ao

DelayDelay Delay
RoRi

Latch

D
En

Q
Latch

D
En

Q
Latch

D
En

Q
Latch

D
En

Q

En En En En

RoRi

Ai

Ao Ao

Ro

Ri Ri

Data Data

 Fig. 2. MOUSETRAP linear pipeline [15].

 Considering the decomposition style, there are two

variants:

a) Projects that use dual-rail data-path, also known as

asynchronous data-path. The STG specification (Signal

Transition Graph - Petri-net), proposed by Chu [23], is the

most appropriate one to describe its controller, which will

interact with the asynchronous data-path without the

insertion of any delay element, allowing a high concurrency.

The asynchronous data-path uses dual-rail components,

which have high implementation cost; and

b) Projects that use single-rail data-path, also known as

synchronous data-path. The implementation is bundled-data,

where a delay element is inserted, setting the cycle time of

the state transition. The “Extended Burst-Mode”

specification (XBM), proposed by Yun [24], is the most

appropriate one to describe the controller (asynchronous

finite state machine – AFSM), which interacts with the

synchronous data-path (Fig. 1). We can mention, at least,

three reasons why it is the most appropriate one:

 i. the status variables are conditional ones, working by level

and having a non-monotonic behavior;

ii. the interaction between the AFSM and the data-path is

performed by a timing discretization. The cycle times of

different state transitions are defined with the insertion of

delay elements, which synchronize the interaction between

AFSM and the data-path. This process fits in the burst-mode

operation (fundamental mode) [24]; and

iii. the XBM specification is more familiar and more

compact than the STG specification to the great majority of

designers.

Data-path
Synchronous

Data_out

Data_in

Control

XBM_AFSM

D
e
l
a
y

Variables of status

Ct

Inputs

Bt

Done

Controller

Fig. 3. General architecture: Bundled-Data asynchronous systems in the

decomposition style.

LAB-GE
Text Box
ISSN:1983 7402 ITA, 28 a 30 SET de 2016

Rodrigo
Placed Image

Rodrigo
Typewriter
113

III. CRYPTOGRAPHIC ALGORITHM: TEA

 The TEA algorithm (Tyni Encryption Algorithm) was

developed by Wheeler and Needhan, in 1994, and further

expanded in [25]. It is based on the concept of symmetric

encryption, due to the use of symmetric keys, i.e., using the

same key to encrypt (TEA_E) and decrypt (TEA_D). The

basic operation of the algorithm consists of additions and

logical exclusive-OR, to generate the nonlinearity and

logical shifts to the left and right, providing the mixture of

data and the key. These operations are repeated several

times, being suggested at least six iterations by the author.

To ensure that the encryption is different after each iteration,

it is used a constant delta, based on the golden ratio, as

shown in (1). The value of delta ensures that the sub-keys

will be distinct and its numerical value has no relevance to

the quality of encryption. Figure 1 presents a diagram

representing a cycle of the TEA algorithm.

<< 4

>> 5

 Delta

K[0]

K[1]

<< 4

>> 5

 Delta

K[2]

K[3]

Fig. 4. Cycle of TEA algorithm of [5].

 31215 Delta

(1)

IV. ASYNCHRONOUS IMPLEMENTATION OF TEA

CRYPTOGRAPHIC ALGORITHM

 The asynchronous design of encryption algorithms

(TEA_E and TEA_D) follows the decomposition style and

have been implemented in the target architecture of Fig. 3,

using FPGA devices.

A. Asynchronous implementation on FPGA

 Commercial FPGAs devices have become a very popular

way to prototype and implement digital systems due to its

low cost and short time project [26]. They were developed

to support synchronous designs, thus the asynchronous

implementation is not natural [27,28]. Two main difficulties

arise in asynchronous designs based on LUTs (Look-Up-

Table) in FPGAs involving AFSM_XBM: a) Process of

mapping hazard-free Boolean functions in logic blocks

(macrocells). The commercial tools used for decomposition

and mapping Boolean functions in LUTs are not prepared to

meet the requirements of logical hazard. This may cause a

circuit malfunction, if manual intervention to fix the

problem is not performed. The mapping function must

satisfy the decomposition requirements proposed in Sigel et

al. [29]; b) Internal routing process among macrocells can

introduce significant delays. These delays can result in

essential hazard and lead to a circuit malfunction [27]. The

circuit delay model defines how to solve the problem of

essential hazard: insertion of delay elements in the feedback

lines or employ macrocells that satisfy the isochronic fork

condition [13,30].

B. Asynchronous optimized design using

decomposition style

 The TEA_E and TEA_D algorithms were synthesized

with an asynchronous behavioral synthesis tool proposed by

Garcia [19]. The tool accepts an algorithm described in

LASYN language (language synthesis - input file for the

tool). Analyzing the synthesis of TEA_E algorithm, in the

first step the tool synthesizes the optimized single-rail data-

path using only synchronous paradigm components. Figure

5 shows the DFG (Data Flow Graph) [20] of the TEA_E

algorithm, in which there are ten steps with a single machine

cycle. The data-path required 5 ALUs (arithmetic logic unit),

of which 4 ALUs have different operations, and 16 registers

(Fig. 7). In the second step, it synthesizes the AFSM_XBM

with Sicarelo tool [31], presenting 15 states, 16 states

transitions, 3 input signals and 61 output signals.

(9) (10)(28) (12)(18)

(08) (19)(31) (21)(29)

(17)(27) (11) (07)(20)

(30) (16)(26) (06) (36)

(25) (15) (05) (37) (39)

(24) (14) (04) (35) (38)

(23) (13) (03) (34) (42)

(22) (02) (33) (40) (41)

(01) (32)

(00)

Z

20

4

Y

Z 4 Z SUMZ 4 Z 5Z 4

15

SUM

Y

10

Z SUM

15

Z 5

25

5

Y

10

10ZSUM

15

Z 5

Y

10

Z 4

Z SUM

15

Z 5

SUM Delta N 1

N 0

SUM N

CMP

Y

Z

Nó: (0) => Z + (1);

Nó: (1) => (2) ^ (22);

Nó: (2) => (3) ^ (13);

Nó: (3) => (4) + 20;

Nó: (4) => (5) << 4;

Nó: (5) => Y + (6);

Nó: (6) => (7) ^ (11);

Nó: (7) => (8) ^ (10);

Nó: (8) => (9) + 10;

Nó: (9) => Z << 4;

Nó: (10) => Z + SUM;

Nó: (11) => (12) + 15;

Nó: (12) => Z >> 5;

Nó: (13) => (14) + SUM;

Nó: (14) => Y + (15);

Nó: (15) => (16) ^ (20);

Nó: (16) => (17) ^ (19);

Nó: (17) => (18) + 10;

Nó: (18) => Z << 4;

Nó: (19) => Z + SUM;

Nó: (20) => (21) + 15;

Nó: (21) => Z >> 5;

Nó: (22) => (23) + 25;

Nó: (23) => (24) >> 5;

Nó: (24) => Y + (25);

Nó: (25) => (26) ^ (30);

Nó: (26) => (27) ^ (29);

Nó: (27) => (28) + 10;

Nó: (28) => Z << 4;

Nó: (29) => Z + SUM;

Nó: (30) => (31) + 15;

Nó: (31) => Z >> 5;

Nó: (32) => Y + (33);

Nó: (33) => (34) ^ (38);

Nó: (34) => (35) ^ (37);

Nó: (35) => (36) + 10;

Nó: (36) => Z << 4;

Nó: (37) => Z + SUM;

Nó: (38) => (39) + 15;

Nó: (39) => Z >> 5;

Nó: (40) => SUM + 2654435769;

Nó: (41) => N - 1;

Nó: (42) => N > 0;

Fig. 5. DFG of TEA_E algorithm.

LAB-GE
Text Box
ISSN:1983 7402 ITA, 28 a 30 SET de 2016

Rodrigo
Placed Image

Rodrigo
Typewriter
114

ALU1

MUXR_ALU1

ABCDE

R1

F

ALU2 ALU3 ALU4 ALU5

MUXL_ALU1

ABCDEF

MUXL_ALU2

ABCDE

MUXR_ALU2

ABCDEF

MUXL_ALU3

ABCDE

MUXR_ALU3

ABCDEG F

MUXR_ALU4

ABCDEG F

MUXL_ALU5

ABCD

MUXR_ALU5

ABCDEF

R2R3R4R5 R6R7R8R9 R10R11 R12 R14R15R16

MUX_Reg16

BA

MUX_Reg15

BA

MUX_Reg14

BA

R13

MUX_Reg13

BA

MUXL_ALU4

ABCDEF

CMP
Y1Z1

V0V1

Delta 8

101554Delta1052041551025515104

OperA

OperB
OperA

OperA

OperB

OperA

OperB

OperA
OperB
OperC

Fig. 6. Data-path single-rail for asynchronous TEA_E.

V. SIMULATIONS & RESULTS

The simulations and designs in the proposed synchronous

and asynchronous styles were made for the TEA_E and

TEA_D algorithms, and were performed in Quartus II

software, version 9.1 [32], considering Altera STRATIX II

(EP2S15F484C3) as target device.

A. Simulations of synchronous and asynchronous

designs

Figure 7 shows the simulation of the synchronous version of

TEA_E algorithm. The waveforms are exactly as expected

to the TEA_E, where V0 and V1 are the inputs of both data,

and Y1 and Z1 are the encrypted outputs. Figure 8 shows a

simulation of the asynchronous version of TEA_E

algorithm. The waveforms are exactly as expected to

TEA_E, arriving to the same results of the synchronous

version.

Fig. 7. Simulation: synchronous TEA_E.

LAB-GE
Text Box
ISSN:1983 7402 ITA, 28 a 30 SET de 2016

Rodrigo
Placed Image

Rodrigo
Typewriter
115

Fig. 8. Simulation: asynchronous TEA_E.

B. Results of synchronous and asynchronous designs

 Table I shows the results of synchronous and

asynchronous versions of TEA_E algorithm. Compared with

the synchronous version, the asynchronous proposal

achieved an 8% reduction in processing time and a reduction

in power loss of 11.9%. There was a penalty in area (LUTs

+ FFs) of only 1.2%.

Table II shows the results of synchronous and asynchronous

versions of TEA_D algorithm. Compared with the

synchronous version, the asynchronous proposal achieved a

reduction of 15% in processing time and a reduction in the

dissipated power of 12%. There was a penalty in the area

(LUTs + FFs) of 4%.

TABLE I RESULTS: ENCRYPTION ALGORITHM TEA_E

TEA_E

Time of
Latency Number

LUTS

Macrocells

Number
Flip-Flops

1634.5ns

2074 520

4712090

1502.01ns
Proposal

Asynchronous

Synchronous

fMAX=55 MHz

Power
Dissipation

462.12mw

519.15mw

TABLE II RESULTS: DECRYPTION ALGORITHM TEA_D

TEA_D

Time of
Latency Number

LUTS

Macrocells

Number
Flip-Flops

1.818,78ns

2054 523

4712005

1.546,01ns
Proposal

Asynchronous

Synchronous

fMAX=50 MHz

Power
Dissipation

477,00mw

541,49mw

VI. CONCLUSION

 Digital systems focusing on the protection of data are

increasingly demanded, being based on the encryption

concept. The encryption algorithms are subject to attacks,

which are based on the analysis of physical quantities, often

using the clock signal to do that. In this paper we proposed

two asynchronous implementations of TEA_E and TEA_D

algorithms, not using the clock signal, what makes them

more robust the SCA attacks. These algorithms have been

implemented in the optimized FSM_XBM architectures of

“local clock” + “conventional data-path”, which can be

mapped onto any PLD device, without requiring any kind of

macro-cells mapping. For future works we will propose

TEA_E and TEA_D implementations in other architectures

focused on FSM_XBM.

REFERENCES
[1] S. Adee, “The Hunter for the Kill Switch”. IEEE Spectrum, vol. 45-5,

pp. 34-39, Jan 2008.

[2] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and others Systems”. In: 16th International Cryptology

Conference on Advances in Cryptology (CRYPTO’96), pp. 104-113, Aug

1996.
[3] P. Kocher, et al., “Differential Power Analysis”. In: 19th

International Cryptology Conference on Advances in Cryptology

(CRYPTO’99), pp. 388-397, Aug 1999.
[4] R. L. Rivest , A. Shamir , L. Adleman, “A method for obtaining

digital signatures and public-key cryptosystems” Communications of the

ACM, Vol.:21, No. : 2, pp 120-126, Feb. 1978.
[5] D. J. Wheeler, R. Needham, TEA, a Tiny Encryption Algorithm, in

the proceedings of FSE 1994, Lecture Notes in Computer Science, vol

1008, pp 363-366, Leuven, Belgium, December 1994, Springer-Verlag.
[6] Advanced Encryption Standard (AES). Federal Information

Processing Standards Publication 197, National Institute of Standards and
Technology, 2001. Available from http://csrc.nist.gov/publications/fips/

fips197/fips-197.pdf.

[7] Digital Encryption Standard (DES). Federal Information Processing
Standards Publication 46-2, National Institute of Standards and

Technology, December 1993. Available from http://www.itl.nist.gov/

fipspubs/fip46-2.htm.
[8] R. Bergamaschi, et al. “Automating the Design of SoC using Cores”.

IEEE Design & Test of Computers, vol. 18-5, Sep 2001, pp. 32-45.

[9] X. Han, et al. “Fault-Tolerante Relay Node Placement in
Heterogeneous Wireless Sensor Networks”. IEEE Transactions on Mobile

Computing, vol. 9-5, pp. 643-656, May 2010.

[10] B. Morris, et al. “How to Encipher Messages on a Small Domain
Deterministic Encryption and the Thorp Shuffle”. In: 29th Annual

International Cryptographic Conference (CRYPTO’09), pp. 286-302, Aug.

2009.
[11] D. Goldhaber-Gordon, et al., “Overview of Nanoelectronic Devices,”

Proc. of the IEEE, vol. 85, No. 4, pp.521-540, April 1997.

[12] J. Cortadella, et al., “Coping with the variability of combinational
logic delays,” ICCD, pages 505–508, 2004.

[13] C. J., Myers, “Asynchronous Circuit Design”, Wiley & Sons, Inc.,

2004, 2a edition.
[14] I. E. Sutherland, “Micropipelines”, Communication of the ACM, vol.

32, No.6, pp.720-738, June, 1989.

LAB-GE
Text Box
ISSN:1983 7402 ITA, 28 a 30 SET de 2016

Rodrigo
Placed Image

Rodrigo
Typewriter
116

http://csrc.nist.gov/publications/fips/
http://www.itl.nist.gov/%20fipspubs/
http://www.itl.nist.gov/%20fipspubs/

[15] M. Singh and S. M. Nowick, “MOUSETRAP: High-Speed

Transition-Signaling Asynchronous Pipelines”, IEEE Trans. on VLSI

Systems, vol.15, no. 6, pp.684-698, June, 2007.
[16] S. F. Nielsen, J. Sparsø and J. Madsen, “Behavioral Synthesis of

Asynchronous Circuits using Syntax Directed Translation as Backend,”

IEEE Trans. on VLSI Systems, vol. 17, Nro. 2, pp.248-261, February 2009.
[17] T. Chelcea, and S. M. Nowick, “Resynthesis and Peephole

Transformations for the Optimization of Large-scale Asynchronous

Systems,” Proc. ACM –DAC, pp.405-410, 2002.
[18] Minoru I. et al., “A Tool Set for the Design of Asynchronous Circuits

with bundled-data Implementation,” Proc. IEEE 29th Int. Conf. on

Computer Design (ICCD), pp.78-83, 2011.
[19] K. Garcia, “Behavioral synthesis of Optimized Asynchronous

Circuits,” Master of Science, Instituto Tecnológico de Aeronáutica – ITA,

Brazil, 2015, (in portuguese).
[20] G. De Micheli, “Synthesis and Optimization of Digital Circuits”

McGraw Hill International Editions, 1994.

[21] L. Spadavecchia, “A Network-based Asynchronous Architecture for

Cryptographic Devices,” PhD thesis, University of Edinburgh, 2005.

[22] R. I. Soares, “Arquiteturas GALS Pipeline para Criptografia robusta

a Ataques DPA e DMA,” Tese de Doutorado, PUC-RS, 2010.
[23] T. –A. Chu, “Synthesis of Self-Timed VLSI Circuits from Graph-

Theory Specifications,” PhD. Thesis, June, 1987, Dep. Of EECS, MIT.

[24] K. Y. Yun e D. L. Dill, "Automatic Synthesis of Extended Burst-
Mode Circuits: Part I (Specification and Hazard-.Free Implementation) and

Part II (Automatic Synthesis)," IEEE Trans. on CAD of Integrated Circuit

and Systems, Vol. 18:2, pp. 101-132, Feb. 1999.

[25] G. S. Mahdi, “A modification of TEA block cipher algorithm for data
security (MTEA),”Engineering & Technology Journal, v. 29, n. 5, 2011.

University of Technology, Iraq Academic Scientific Journals.

[26] J. J. Rodriguez, et. Al., “Features, Design Tools, and Applications
Domains of FPGAs”, IEEE Trans. on Industrial Electronics, vol. 54, No. 4,

pp.1810-1823, August 2007.

[27] E. Brunvand, “Using FPGAs to Implement Self-Timed Systems”,
Journal of VLSI Signal Processing, Special issue on field programmable

logic, vol.6(2), pp.173-190, August, 1993.

[28] M. Tranchero and L. M. Ryneri, “Implementation of Self-Timed
Circuits onto FPGAs Using Commercial Tools”, 11th Euromicro Conf. on

Digital System Design Architectures, Methods and Tools, pp.373-380,

2008.
[29] P. Sigel, G. De Michele and D. Dill, “Decomposition methods for

library binding of speed-independent,” Proc. Int. Conf. Computer-Aided

Design, pp.558-565, 1994.

[30] D. L. Oliveira, et al., “Burst-Mode Asynchronous Controllers on

FPGA,” Int. Journal of Reconfigurable Computing, vol. 2008, pp.1-10,

2008.
[31] T. Curtinhas, et al. “SICARELO: A tool for synthesis of Locally-

clocked Extended Burst-Mode Asynchronous Controllers,” IEEE 5rd Latin

American Symposium on Circuit and Systems, pp.1-4, 2014.
[32] Altera Corporation, 2016, www.altera.com.

LAB-GE
Text Box
ISSN:1983 7402 ITA, 28 a 30 SET de 2016

Rodrigo
Placed Image

Rodrigo
Typewriter
117

