Transmissão e Distribuição Remota de Sinais Radar Banda Larga Multicanal em Redes de Fibra Óptica por DWDM

André Paim Gonçalves, Olympio Lucchini Coutinho¹ ¹Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos/SP – Brasil

Resumo — Este artigo aborda a transmissão e distribuição de sinais de radar com banda larga em fibras ópticas com o emprego de Multiplexação por Divisão Densa de Comprimento de Onda (DWDM) para emissores radar remotamente localizado, 1 km, em relação a seu parque de antenas. Esse enlace analógico a fibra foi concebido para a transmissão de sinais radar na faixa de frequência de 0,3 a 3 GHz. Tal enlace é apresentado, por meio de uma breve abordagem teórica e experimental. Para isto este estudo fez considerações em relação à influência de não linearidade e dispersão cromática. Essa modelagem permite verificar com precisão o efeito da dispersão da fibra óptica no sinal de RF, bem como verificar o comportamento do ganho de potência do sinal de RF. A implementação de tal enlace em bancada permitiu confirmar tal comportamento espectral do sinal radar, a estabilidade do ganho e seu futuro emprego para radares de banda larga.

Palavras-chaves — DWDM, enlace analógico à fibra óptica, sinais radar.

I. INTRODUÇÃO

Nos últimos anos se observa uma busca por sistemas de RF, onde estes tenham uma grande largura de banda para transmissão de sinais, dimensões reduzidas e baixa dissipação de energia. Por conta dessas características, a Fotônica vem contribuindo no desenvolvimento dessas novas tecnologias. Circuitos fotônicos são significativamente mais leves do que os de RF, eles não sofrem interferência eletromagnética (IME) e são imunes a pulso eletromagnético (EMP). O fato de a fibra óptica não ser condutora e, portanto, não gerar arco voltaico ou faíscas se torna uma opção interessante para barramentos que passam próximos ou através de tanques de combustível, sem o risco de incêndio ou explosão [1].

Nesse contexto surgiu há alguns anos o termo *Microwave Photonics*, assim, este artigo fará referência a esse assunto com o nome de "RF em fotônica". Este último é uma área, do conhecimento humano com rápido crescimento, usada para alicerçar o processamento, a transmissão e a geração de sinais de RF usando sistemas ópticos [1].

Valendo-se da RF em fotônica, foi proposto um enlace para transmissão de sinais de um radar com diversos canais para as suas respectivas antenas, conforme a Fig.1. Tal enlace deveria ter pelo menos 1 km de comprimento, baixa atenuação do sinal de RF e ter seu ganho de potência de RF estável, isto é, seu ganho ser uniforme para toda a banda de transmissão. Diante de tais requisitos empregou-se um enlace analógico à fibra óptica com o uso de DWDM sem amplificação óptica.

Este artigo pretende fazer uma análise teórica e experimental da transmissão e distribuição remota de sinais radar multicanal em redes de fibra óptica por DWDM. Cabe ressaltar que DWDM é um acrônimo de *Dense Wavelength Division Multiplexing*, que significa em uma tradução livre: "multiplexação por divisão densa de comprimentos de onda". Esta multiplexação é uma técnica de transmissão por fibra óptica que utiliza comprimentos de onda distintos da luz para a comunicação de dados [2].

O artigo foi organizado em quatro seções. Na seção II abordou-se uma breve análise do enlace, que faz uso da tecnologia DWDM, sobre as condições limitantes para o seu emprego e do comportamento de ganho de potência de sinal de RF do sistema com base em um modelo sem aproximações (emprega o Teorema de Adição de Graf). Na seção III os resultados experimentais obtidos foram apresentados e comentados. Na seção IV foram feitas as considerações finais do artigo.

Conforme se observa na Fig. 2, esse enlace é composto por diodos laser, circuitos casadores de impedância, moduladores eletro-ópticos de Mach-Zehnder, cabos de fibras ópticas mono modo padrão (SMF-28), multiplexadores/demultiplexadores do tipo AWG (*Arrayed Waveguide Grating*), fotodetectores do tipo p-i-n e unidades amplificadoras de RF (UA).

Fig. 1. Representação conceitual do enlace de sinais de RF remotamente transmitidos de um radar localizado (1 km) em relação aos conjuntos antenas/amplificadores [2].

29

Fig. 2. Representação esquemática simplificada de um sistema de antena remotamente localizada de 1 km de distância do gerador radar. A linha verde significa enlace na faixa óptica do espectro e a vermelha na faixa de RF. CCI -Circuito de Casamento de Impedância [2].

II. ANÁLISE DO ENLACE ANALÓGICO À FIBRA ÓPTICA DWDM

Pelo fato de serem utilizados moduladores de Mach-Zehnder (MMZ) nesse enlace, deve-se levar em conta sua resposta óptica senoidal quadrática, conforme observado na Fig.3. A análise de sua modulação é feita no ponto de quadratura e é escolhida uma abordagem para pequenos sinais ou uma abordagem para grandes sinais. A de pequenos sinais constitui em escolher índice de modulação, "m", bem menor que um. Um valor postulado para "m", neste trabalho, é em torno de 0,1, dependendo do nível de ruído. Quando o estudo é conduzido para valores muito pequenos de "m" implica em aproximações da série de funções de Bessel e quando é levada em conta uma modelagem para "m" maiores surge a necessidade de uma abordagem com série de funções de Bessel [2] e [3]. Neste artigo será empregada, para a análise do enlace, a figura de mérito relacionada com o ganho de potência do sinal de RF baseado no teorema de adição de Graf. Tal teorema permite fazer uma abordagem que engloba as duas abordagens anteriores, isto é, a de pequenos sinais e de grandes sinais.

A não linearidade do MMZ não advém do material, mas sim por intermédio da sua função característica senoidal quadrática, observada a esquerda na Fig. 3, o que ocasiona distorções por harmônicas das frequências dos sinais modulantes (sinais em RF) e produto de intermodulação, a direita na Fig. 3 [4].

Fig. 3. Representação do comportamento da potência do sinal na saída do MZM. À esquerda, o comportamento no domínio do tempo. À direita, o comportamento no domínio da frequência. f_{RF} é a frequência da portadora de RF e f_o é a frequência da portadora óptica.

Os sinais com frequências harmônicas pares podem ser desconsiderados desde que o MMZ-SD (modulador Mach-Zehnder *Single Drive*), esteja polarizado no ponto de quadratura [4] e [5]. Quanto às distorções oriundas do produto de intermodulação, deve-se observar o limite de potência na entrada do modulador. Este limite é obtido por meio do teste de dois tons. Quando o modulador está polarizado no ponto de quadratura, o produto de intermodulação de terceira ordem se torna o mais importante.

Outro fenômeno importante é a dispersão. No enlace analisado, empregou-se a fibra óptica mono modo padrão (SMF-28), cuja dispersão cromática está presente. Contudo, devido ao seu comprimento ser de apenas 1 km e a faixa de RF a ser observada está definida entre 0,3 a 3 GHz, tal fenômeno não exercerá influência significativa, sendo confirmado pelo cálculo do ganho de potência de RF

Neste estudo não será abordada a influência do ruído no sinal de RF na saída do enlace.

A análise desse enlace deve levar em conta o problema da diafonia (*crosstalk*) pelo fato de empregar o DWDM. Essa diafonia pode ocorrer tanto no AWG demultiplexador (AWG-DEMUX) quanto na fibra óptica por conta dos seus efeitos não lineares.

Na fibra óptica, devido à multiplexação dos sinais do enlace, destacam-se os seguintes fenômenos: Automodulação de Fase (SPM), Modulação de Fase Cruzada (XPM), Mistura de Quatro Ondas (FWM), Espalhamento Brillouin (SBS) e Espalhamento Raman (SRS).

Para mitigar o efeito de tais fenômenos na fibra óptica, foi considerado o limite de potência do sinal das portadoras ópticas, a diferença mínima de comprimento de onda dessas portadoras e um valor mínimo de dispersão da fibra óptica [5] e [6].

O multiplexador/demultiplexador do tipo *Arrayed Waveguide Grating* (AWG), empregado neste estudo, segue a norma STM-4 da União Internacional de Telecomunicação (ITU), a qual preconiza espaçamentos entre canais de 12,5 a 200 GHz. O AWG em questão apresenta um espaçamento entre canais de 100 GHz. Com isto a eficiência de mistura para o efeito de XPM e FWM é próxima de zero e a interferência entre os canais fica desprezível quanto ao acoplamento entre canais ópticos adjacentes na fibra óptica [2].

Considerando o isolamento entre canais ópticos adjacentes em um multiplexador/demultiplexador do tipo AWG em torno de 30 dB, então esses são considerados como lineares [2] e como não havendo *crosstalk* entre canais ópticos adjacentes.

Diante de tais considerações e dentre as diversas figuras de mérito disponíveis para a verificação da qualidade do enlace, fez-se uso da análise do ganho de potência elétrica em [dB] que leva em conta todos esses fenômenos.

Para se determinar o comportamento do ganho de potência de RF no enlace DWDM deve-se partir da expressão do Ganho de Potência de RF [2] calculado com o auxílio do teorema de Graf dado por:

$$G = \frac{4\eta_D^2 \alpha_g^2 (P_o^{entrada})^2}{P_{RF} Z_L} J_1^2 \left(2m_i \cos\left(\frac{1}{2}\theta_d \omega_{rf}^2\right) \right)$$
(1)

A responsividade do fotodetector é representada por η_D ; α_g é a representação de todas as perdas ópticas, tais como a perdas de inserção; $P_o^{entrada}$ é a representação da potência óptica de entrada; P_{RF} é a potência do sinal de RF na entrada do sistema; J_i é a representação da função de Bessel de primeira espécie de ordem um; m_i é o índice de modulação de RF no modulador de Mach-Zehnder; θ_d é o coeficiente de dispersão de primeira

ordem determinado na frequência angular da portadora óptica, ω_0 ; ω_{rf} é a frequência angular do sinal de RF e Z_L é a impedância da carga. Note que em (1) a dispersão cromática é levada em conta de uma forma mais precisa do que a observada com a aproximação para pequenos sinais [2].

Aplicando os dados contidos na Tabela I em (1) é possível observar na Fig.4 o comportamento previsto do sinal variando de 300 MHz a 3 GHz.

ΓABELA I: VALORES PREVISTOS PARA OS CA	ÁLCULOS	DE
GANHO DE RF		

PARÂMETRO	VALOR
Comprimento de onda da	1553,33 nm
portadora óptica	
Impedância da fonte de RF	50 Ω
Impedância da carga de RF	50 Ω
Potência do sinal de RF	-4,68 dBm para m _i =0,1
aplicada ao MZM	e 8 dBm para m _i =1
Potência do Laser	10,69 mW
Tensão de meia onda	4,1 V
Impedância de entrada MZM	50 Ω
Perda óptica total	4,54 dB
Dispersão cromática da fibra	17 ps/nm•km
mono modo padrão @ 1,550	
nm (<i>Corning</i> ®, 2002)	
Velocidade da luz no vácuo	3x10 ⁸ m/s
Responsividade do	0,97 mA/mW
fotodetector	

Fig.4. Comportamento do Ganho de Potência do sinal de RF sob influência da dispersão sem o uso do amplificador de RF na saída do fotodetector.

Observando o resultado na Fig. 4, percebe-se que o ganho de potência do sinal de RF se comporta de forma estável ao longo do intervalo de frequência de RF (0,3 a 3 GHz). Este comportamento permite inferir, por exemplo, que um sinal radar com banda de 2 GHz centrado em 1,5GHz não teria problema para ser transmitido nesse enlace.

III. O EXPERIMENTO

O enlace foi implementado por componentes comerciais. Utilizaram-se dois lasers DFB que operam no canal 30@ 1553,33 nm e Canal 31 @ 1552,52 nm, dois moduladores MZ com tensão de meia onda, $V_{\pi} = 4,1$ V @ 1GHz, dois AWG DWDM que operam nos Canais 29 a 32 (espaçamento entre canais ópticos 100 GHz), 1 km de fibra óptica *Corning Glass* SMF-28 dispersão de 17 ps/nm•km, dois fotodetectores para comprimento de ondas de 900 a 1650 nm (banda de saída em RF >5 GHz) e amplificadores de RF (banda até 3 GHz, ganho mín. 33 dB). Esses componentes foram montados conforme as Fig. 5, 6 e 7.

Primeiramente, modelaram-se e caracterizaram-se experimentalmente todos os componentes deste sistema visando ter conhecimento dos valores envolvidos em cada parâmetro do enlace.

Após esta caracterização, visando medir o ganho de RF do enlace, conectou-se um dos cabos de RF de entrada do sistema a ser caracterizado à porta "1" do analisador de rede. Os fotodetectores foram conectados aos seus respectivos amplificadores. Os cabos de saída dos amplificadores foram conectados a um combinador de RF. A saída deste combinador foi conectada a um cabo de RF. A outra extremidade deste cabo foi conectada à porta "2". Quando foram medidos os parâmetros "S" do sistema, colocou-se o conector da entrada de RF do canal 30 na porta "1" e casou-se a entrada de RF do canal 31 com uma carga de 50 Ω . O que podem ser observados nas Fig. 5 e 7.

Fig.5. Esquema representativo da caracterização do enlace analógico a fibra óptica baseado na técnica DWDM quanto à frequência de RF e sua potência com analisador de rede. Os números circulados representam os pontos de entrada de RF (ímpares) e de saída de RF (pares) do circuito óptico.

31

Fig. 6. Equipamentos empregados no enlace.

Fig. 7. Equipamentos empregados nas medições dos parâmetros do enlace.

O enlace foi organizado de acordo com a Fig. 5 para medir o ganho de potência do sinal de RF. Tal ganho para cada canal pode ser calculado descontando o resultado medido do parâmetro " S_{21} " para os cabos de RF e o amplificador de RF no valor medido do parâmetro " S_{21} " de cada canal. A Fig. 8 apresenta o resultado medido para o canal 30 comparado com o calculado pelo método de pequenos sinais e pelo método exato aplicando teorema de Graf.

Fig.8. Gráfico comparativo do resultado medido com o índice de modulação = 0,1 para o canal 30 em relação ao calculado pelo método de pequenos sinais e pelo método exato aplicando teorema de Graf.

Observando a Fig. 8, percebe-se que a sobreposição dos valores obtidos visando à comparação do resultado calculado com o valor medido mostra uma diferença muito pequena. Os valores calculados (-32 dB) estão oscilando aproximadamente em 0,5 dB com relação aos resultados medidos.

Para verificar o impacto do *crosstalk* óptico, observado na Fig. 9, no sinal de RF a partir do enlace configurado conforme a Fig. 10, optou-se por desconectar a saída do canal óptico 31 (que não está sendo medido) de seu fotodetector. Diante deste fato, foi possível observar somente o sinal que vinha do fotodetector do canal 30. O resultado desta ação foi observado no analisador de espectro Agilent E4407B que explora uma faixa de 9 kHz a 26,5 GHz, o qual foi obtido no canal 30 e apresentado na Fig.11.

Fig. 9. Espectro óptico obtido no canal 30 apresentando um sinal espúrio devido ao *crosstalk* com o canal 31. Este sinal apresenta uma potência óptica de -58,12 dBm, isto é uma diferença de aproximadamente de 52 dB do sinal do canal 30.

Fig.10. Esquema representativo da caracterização do enlace analógico a fibra óptica baseado na técnica DWDM quanto à frequência de RF e potência.

O resultado observado na Fig. 11 mostra o sinal de RF na frequência da portadora centrada em 1 GHz proveniente do canal 30 sem a interferência do sinal de RF proveniente do canal 31. Não são observados os sinais harmônicos da frequência de RF centrada em 1 GHz. Foi observado um sinal espúrio constante em torno de 2,154 GHz. Este último, mesmo com os geradores de RF desligados, foi observado. O que

indica ser um sinal interferente externo. Para a faixa de frequência de operação do enlace estudado, verifica-se que este sinal não influenciou no experimento.

Fig.11. Medida obtida no analisador de espectro Agilent E4407B. O espectro do sinal de RF referente ao canal 30 pode ser observado. Os sinais de RF foram gerados com potência de -4,68 dBm (equivalente ao índice de modulação igual a 0,1).

Analisando (1) percebe-se que o ganho de RF depende da potência da portadora óptica. Contudo, quando se trata de transmissão de mais de uma portadora óptica em uma fibra óptica deve-se limitar o aumento da potência óptica que é utilizada para melhorar o ganho de potência do sinal de RF. Este fato ocorre por conta dos efeitos não lineares descritos na Seção II.

Observando a Fig.4, como estudado na seção anterior, era esperado um comportamento aproximadamente retilíneo nesta faixa de frequência e isto foi verificado na Fig. 8.

Analisando a Fig. 11 percebe-se que o segundo sinal de RF na frequência de 1,3 GHz (frequência fundamental de RF do canal 31) não foi observado. O sinal de RF do canal 31 continuou sendo gerado com potência igual a do canal 30 (-4,68 dBm). Com isto, constata-se que não ocorre a diafonia na faixa de frequência de RF mesmo ocorrendo o crosstalk óptico, conforme a Fig. 9. Repetindo o procedimento aplicado para verificar o crosstalk na faixa de frequência de RF no canal 31 foi obtido o mesmo resultado para este nível de ruído. Cabe ressaltar que a diafonia óptica verificada na Fig. 9 tinha uma diferença entre os sinais de aproximadamente de 50 dB, o que possivelmente evitou a interferência mútua entre canais óticos e de RF. As frequências harmônicas da frequência fundamental gerada no canal 30 não aparecem. Isto era esperado tendo em vista que o nível do sinal de RF do canal 30 quando entra no MMZ não é grande o suficientemente em relação à tensão de polarização de meia onda deste modulador, o que confere um índice de modulação menor que 0,1.

Na Fig. 11 aparece um sinal espúrio que não estava previsto e que permanecia mesmo com os equipamentos desligados, o mesmo foi interpretado como interferência e não influenciou na análise do resultado.

IV. CONCLUSÃO

A linearidade e a dispersão cromática podem limitar o ganho do enlace a fibra óptica por DWDM do sinal de RF. Observando os resultados percebe-se, por conta do comprimento do enlace de 1 km, que a dispersão e os fenômenos não lineares da fibra não influenciaram na transmissão dos sinais de RF. O ganho de potência de RF para este enlace a fibra óptica por DWDM foi aproximadamente -32 dB para a faixa de frequência de 0,3 a 3 GHz. Os resultados para o método de cálculo aplicando o Teorema de Adição de

Graf e os resultados pela aproximação para pequenos sinais foram aproximadamente coincidentes, tendo em vista que, com o índice de modulação (mi) próximo de 0,10, não ocorre a transferência de energia da componente fundamental para as harmônicas. Cabe ressaltar, que se fosse necessário observar o comportamento dos sinais de RF para o caso de índice de modulações maiores, poderia ser avaliado com essa expressão desenvolvida com base no teorema de adição de Graf. Tornoupossível verificar que o enlace se apresenta se aproximadamente linear graças ao respeito aos limites de potência óptica, dispersão e espaçamento entre canais ópticos sendo respeitados. Essa linearidade permite a fidelidade do sinal para esta aplicação. E com estes resultados, nesse estudo inicial, a possibilidade de emprego de enlace à fibra óptica por DWDM de sinais de RF em transmissão de sinais radar que dependam de banda larga (acima de 1GHz) sem distorções é factível.

REFERÊNCIAS

- Coutinho, Olympio L., Almeida, Vilson R. e Oliveira, José Edimar B. "Uso de Redes de Comunicações Ópticas para Transmissão e Distribuição de Emissores Radar", XIII Simpósio de Aplicações Operacionais em Áreas de Defesa (SIGE), São José dos Campos, 2011.
- [2] Gonçalves, André P. Estudo experimental de enlace analógico a fibra óptica empregando WDM e sinal de RF multi-espectral. 2014. 171f. Dissertação (Mestrado em Micro-ondas e Opto-eletrônica) – Instituto Tecnológico de Aeronáutica, São José dos Campos.
- [3] Jemison, William D. e Paolella, Arthur C., "Introduction to Analog Fiber-Optic Links", RF and Microwave Applications and Systems, Chapter 9, RF and Microwave Handbook, 2^a Edição, CRC Press, 2008
- [4] Kolner, Brian H. e Dolfi, David W., "Intermodulation distortion and compression in an integrated electrooptic modulator", Applied Optics, Vol. 26, No. 17, setembro, 1987
- [5] Korotky, S. K. e Halemane, T. R., "Distortion Characteristics of Optical Directional Coupler Modulators", IEEE Transactions on Microwave Theory and Techniques, vol. 38, n^o. 5, maio, 1990.
- [6] S. P. Singh and N. Singh, "Nonlinear effects in optical fibers: origin, management and applications ", Progress in Electromagnetics Research, PIER 73, 249–275, 2007.