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Abstract— The use of thermal sensors embedded in remotely
piloted aircraft constituted a remarkable advance in the oper-
ational capacity of military forces. However, the amount of in-
formation available alongside the regular workload overwhelms
sensor operators. This study analyzes the performance of the
YOLOv3 algorithm regarding target detection in a dataset
of thermal images generated using the DcOMPASS sensor.
The training method sought the configuration with the best
performance conducting a hyperparameters search. Initially,
training was carried out with the entire dataset, and then,
separately with data only in blackhot or only whitehot. A software
approach for the generation of images with inverted grayscale
palette was also an option. The achieved results revealed training
with images of opposite polarity (whitehot and blackhot) affects
the final result negatively. The evaluation metrics were frame
rate per second (FPS) and Mean Average Precision (mAP), and
the finals scores demonstrate that YoloV3 can be successfully
applied in the detection of targets in infrared images.

Keywords— Target detection, Convolutional Neural Network,
thermal images.

I. INTRODUCTION

The use of Remote Piloted Aircraft Systems (RPAS) has
grown exponentially in the world in recent years. Their
versatility and potential for employment radically changed the
most diverse sectors.

At the end of 2018, the United States of America had
277,000 drones, and the conservative projection for the year
2022 is a fleet of 400,000 [1]. Specifically in Brazil, con-
sidering only civilian drones that are required by law to
be registered with National Civil Aviation Agency of Brazil
(ANAC), their number jumped from 13,256 in 2017 to 76,865
in 2020, an increase of almost six times in three years [2].

In the military field, a RPAS main purpose is to serve
as a platform for weapons and sensors on missions where
employing a crew would be unnecessary or risky. Due to
their versatility, thermal sensors are instruments equipped as
a payload in vast majority of these aerial systems.

One of its functions is to help deal with object detection.
Object detection in Unmanned Aerial Vehicle, as a kind of
burgeoning technique, has numerous applications, such as
aerial image analysis, intelligent surveillance, and routing
inspection [3].

However, even today, the infrared image interpretation to
discover targets always depends on human interpretation,
which is inefficient and requires a lot of manpower [4]. RPAS
offer digital images but theirs interpretation is manual.
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Sensor operators on intelligence missions are overwhelmed
with a vast amount of images and data made available by the
sensor. In addition, due to the large flight autonomy of these
aircraft, tasks such as target detection become more complex
over time with increased fatigue.

In this context, automated tools for targets detection over
specific classes are essential to achieve the expected result.
In the field of artificial intelligence, convolutional neural net-
works (CNN) are state-of-art in detecting objects in images.

They are able to automatically and adaptively learn spatial
hierarchies of features through backpropagation and are based
on multiple building blocks (convolution layers, pooling lay-
ers, fully connected layers, etc [5].

Frequently new CNN-based algorithms are surpassing pre-
vious state-of-art results in competitions where they aim for
the best performance in specific datasets such as COCO
(Common Objects in Context) with more than 80 classes and
330,000 images [6].

The contribution of this paper rests on the analysis of the
performance of the YOLOv3 [7] object detection algorithm
over a single class of objects of interest (land vehicles).
Infrared images from the Digital Compact Multi-Purpose
Advanced Stabilized System-UAV (DCoMPASS) composes
the dataset, and to the best of our knowledge, this is the first
work to analyze images from that sensor.

Section II briefly describes related works. The was replaced
by remainder of this paper is organized as follows, Section III
gives theoretical background about CNNs and the structure
of the YOLOv3 algorithm. After, Section IV highlights the
attributes of the sensor and the dataset. Section V discusses
the developed experiments and the obtained results. Lastly,
Section VI concludes and shares our ideas for future work.

II. RELATED WORKS

Other works sought to research about the detection of
objects in infrared images. With a focus on detection in
the marine environment, Scholler et al. [8] compared the
performance of three convolutional neural networks using a
large dataset composed of images of vessels and buoys in
Long Wave Infrared (LWIR).

Some others as Akula, and Sardana [9], just tried to explore
the extraction of attributes. Having as main objectives to
evaluate the performance of a CNN as a feature extractor for
target recognition in infrared imagery and additionally con-
duct experiments to optimize the classification performance
using features extracted from different layers.

In the defense area, d’Acremont et al. [5] propose synthetic
infrared images to produce large groundtruthed datasets for
training, obtaining good results even with no data augmenta-
tion and fine-tuning steps.
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Target recognition in thermal infrared images is challeng-
ing due to the high variability of target IR signatures and
competing background IR signature due to a number of
environmental and target parameters [9]. Factors such as
internal heat source, exposure to sunlight, and time of day
cawas replaced by n change its visualization in the image as
its temperature increase or decrease.

The absence of publicly available data on the performance
of convolutional neural networks in aerial infrared images,
specifically to images obtained through the DCoMPASS sen-
sor, motivated this research.

III. CONVOLUTIONAL NEURAL NETWORKS

A. Functioning of convolutional neural networks

In the 1958, Frank Rosenblatt developed the Perceptron
Model, inspired by previous works by Warren McCulloch and
Walter Pitts.

The perceptron is the simplest form of a neural network
used for the classification of patterns said to be linearly
separable [10]. Each entry (x) is multiplied by its respective
weight (w), then, added to a bias and finally applied to an
activation function lambda (λ) as shown in Figure 1.

bias
x1

xm

x2

w1

wm

w2

Fig. 1. Rosenblat’s perceptron

Several neurons together form what is called artificial
neural network (Figure 2). The first layer (input) sends the
result of the activation function to the units of the intermediate
(hidden) layers, in the same way, twas replaced by his layer
sends the response to the final layer (output).
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hidden
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Fig. 2. Artificial neural network

Neural networks arranged in several layers allow the learn-
ing of increasingly abstract elements, a process known as deep
learning. Within deep learning, convolutional neural networks
are a specialized kind of neural network for processing data
that has a known grid-like topology like images [11].

The main component of the convolutional neural network is
the convolution layer. The main difference between a regular
and a convolution layer is that a regular layers learn global
patterns in their input feature space (for example, patterns

involving all pixels), whereas convolution layers learn local
patterns[12].

Roughly, the convolution is mathematical operation that,
from two functions, generates a third one expressing how the
shape of one is modified by the other. In the context of images,
we can understand this process as a kernel that transforms an
input image.

In convolutional network terminology, the first argument to
the convolution is often referred to as the input, and the second
argument is the kernel. The output is sometimes referred to
as the feature map [11].was replaced by

This operation is applied several times in different regions
of the image. At each application, the region is changed by a
parameter called stride, usually equal to 1. Figure 3 describes
the process.
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Fig. 3. Convolutional operation.

Another typical layer of a convolutional neural network
is the pooling layer. A pooling function replaces the output
of the net at a certain location with a summary statistic of
the nearby outputs. For example, the max pooling operation
(Figure 4) reports the maximum output within a rectangular
neighborhood [11].

Pooling helps to make the representation approximately
invariant to small translations of the input. Invariance to
translation means that if we translate the input by a small
amount, the values of most of the pooled outputs do not
change [11].
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Fig. 4. Max pooling operation.

B. YOLOv3 network

YOLOv3 is an algorithm that employs a CNN for real time
detection task. For conciseness, we provide a brief overview of
the YOLO technique. For a more comprehensive explanation,
we refer the interested reader to the original YOLO papers
[13][14][7].

Darknet-53 feature extractor is the backbone of YOLOv3.
This backbone provide 53 convolutional layers, each followed
by a batch normalization layer and Leaky ReLU activation
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function. During training the network use sum of squared error
and binary cross-entropy as functions losses for bounding box
and class predictions, respectively [7].

Besides detection, this kind of algorithm also predict class
labels, just applying a single neural network to the whole
image. YOLOv3 divides the image into S × S grid cells
(for example 13 × 13). For each of these cells the algorithm
predicts several anchor boxes.

Anchor boxes are boxes with predefined aspect ratios.
These aspect ratios are determined before training by running
K-means on the whole dataset.

The K-means algorithm aims to separate all samples to k
clusters, which are usually chosen to be as far as possible
from each other spatially, in Euclidean distance, to produce
effective data mining results [3].

Once defined these anchors, the algorithm chooses the
boxes that best overlapped the groundtruth using the Inter-
section over Union (IoU) concept.

IoU is given by the ratio of the area of intersection and
area of union of the predicted bounding box and the ground
truth bounding box (Figure 5).

IoU = 
area of overlap

area of union

Fig. 5. Intersection over Union

For each grid cell, YOLOv3 provides one prediction for
each anchor box in a vector format as depicted in (1):

y =



tx

ty

th

tw

to

c1
...

cn



. (1)

to is an objectness score to indicate if this box contains an
object and tx, ty, th, and tw are offsets relative to a particular
anchor box. The values c1, . . . , cn are class probabilities that
permit us to associate a class with a box.

Using a sigmoid function (σ), is possible to obtain the
bounding box center coordinates as depicted in (2) and (3).
For bounding box width and height we need to apply the
transformations (4) and (5) using width (pw) and height
(ph) of the respective anchor box. All these transformations
considers the grid cell has an offset from the top left corner

of the image given by (cx, cy):

bx = σ(tx) + cx, (2)
by = σ(ty) + cy, (3)
bw = pwe

tw , (4)
bh = phe

th , (5)
confidence = σ(to). (6)

Where:

• bx, is the x coordinate of the center of the bounding box.
• by , is the y coordinate of the center of the bounding box.
• bh, is the bounding box height.
• bw, is the bounding box width.
• confidence, is the probability an object is contained

inside the grid cell × the IoU, Pr(obj)× IoU(b, obj).
• c1 . . . cn, presence or not of each class using one-hot

encoding.

YOLOv3 provides predictions at 3 different scales. At each
scale, the prediction is a 3D tensor encoding bounding box
(1).

IV. SENSOR AND DATASET

A. DcOMPASS

The DCoMPASS sensor, shown in Figure 6, is a surveil-
lance payload for Intelligence, Surveillance, Target Acquisi-
tion, and Reconnaissance (ISTAR) with the following fea-
tures: a high definition color TV camera, a large format
thermal imager, a laser target illuminator, an eyesafe laser
rangefinder, and a laser target designator [15]. The focus of
this paper, the thermal imager, uses an indium antimonide
detector that covers the medium-wavelength from 3.4 to 4.8
µm with 512×640 pixels definition and 25 frames per second.

Fig. 6. DcOMPASS payload for Unmanned Aerial Vehicles.

Despite all images being in grayscale, the sensor also offers
the operator the possibility to switch between two palette
options for thermal images. In the first, called blackhot, the
warmest regions in the sensor’s field of view are the darkest. In
the second option, whitehot, the light regions are the warmest,
as shown in Figure 7.
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Fig. 7. Images in blackhot (left) and whitehot.

B. Dataset

In this research, we collected the image data to compose the
dataset from videos of the DcOMPASS sensor trying to make
it more diverse as possible. The selection of videos sought to
include samples of all hours of the day, at a flight altitude
ranging from 6000 to 10000 ft, with tilt angles between 30
and 80 degrees, while searching for varied target states for
example vehicles with engine off, and engine on, several
temperatures, and meteorological conditions. This diversity
of conditions added to the characteristics inherent to thermal
images that may vary over the course of the day are in
themselves an augmentation procedure.

After this first round of selection, we extracted the frames at
an interval of 1 frame/second from scenes related to the class
of interest. To perform the extraction, the opensource software
FFmpeg was used. The final data are 576×720 pixels images,
around 30 kB each in RGB, although, all of them are in gray
tones.

At the last step, the resulting dataset was annotated with
bounding boxes indicating the groundtruth using a custom
software which exported the annotations to the format re-
quired by the YOLO framework. This paper focuses on a
single class (vehicle) which includes only cars, trucks and
buses (Figure 8), although the network only treats it as a single
class. The images collected were the most diverse possible,
full and partial images were used, with isolated and grouped
elements. Table I shows a brief summary of the dataset.

Fig. 8. Example of scene with several vehicles.

V. EXPERIMENTS AND RESULTS

Initially, 10% of the samples were randomly separated
from the dataset for testing purposes. The evaluation used
as metric the mean average precision (mAP ) computed from
the average precision (AP ) of each class, as defined in (10)
and (9), respectively. The mAP is the standard measure used
in computer vision to evaluate the performance of algorithms

TABLE I

DATASET SUMMARY

Attribute Value

whitehot images 2440

blackhot images 975

total samples 3415

width x height 576 x 720

image size ≈ 30 kb, 96 dpi

average targets/sample 13,48

in the detection task. In this research, as there is only one
class the two terms are equivalent. The calculation of AP is
done by integrating the area under the precision (7) and recall
(8) function curve, Figure 9.

The metrics Precision (P) and Recall (R) are defined as:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

Where TP, FP, and FN are the number of true positives,
false positives, and false negatives, respectively.

We determine whether a bounding box (BB) is a true or a
false positive if the IoU value is beyond a certain threshold,
as follows:

• True Positive: IoU > 0.5.
• False Positive: IoU < 0.5 or a duplicated bounding box.
• False Negative: no detection at all or has an IoU > 0.5

but has a wrong classification. In our case, as we have
only one class that is not an issue.

Having computed all values, we draw a plot of precision×
recall curve Figure 9. So, given a class c ∈ {c1, c2 .., cm}, the
average precision for this class (APc) is the integral over the
function precision = p(recall), in other words, the graphics
area, according to (9).
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Fig. 9. Precision-Recall curve.
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Then, to obtain the mAP , we simply calculate the average
of the AP of all classes, as in (10).

APc =

∫ 1

0

p(r)dr (9)

mAP =
1

m

m∑
n=1

APc (10)

In a defense context, no large-scale real datasets can
generally be collected [5]. Due to the small size of ours, we
tried to circumvent this issue with a software solution. So, for
each image in whitehot a script produced its corresponding
blackhot image or vice versa as a photographic negative,
thus, doubling our dataset. However, the network performance
slightly decreased, a 0.21% mAP drop, and a homogeneous
set in this aspect showed itself more promising.

To confirm this fact, the network trained with the whole
dataset, containing the originals whitehot and blackhot im-
ages. After, we carry out training with only one category at
a time. Despite having more data available, the first network
achieved a lower result than the networks trained with uniform
data. Hence, all subsequent training sessions used a dataset
consisting only of whitehot images with 2440 samples.

Besides, most of the images have flight data annotations in
green overlapping the images. The sensor system does that
automatically. At first, we chose not to provide labels for
targets covered by these notes. However, the network training
performed better including these targets.

In many application scenarios, the dimensions of bound-
ary boxes exhibit strong patterns. Detection algorithms take
advantage of this fact to improve their performance and
use preselected bounding boxes customized to the dataset.
YOLOv3 uses 9 preselected bounding box priors (anchors)
[16]. For performance improvement, we calculated custom
anchors boxes using K-means algorithm for our dataset.

After processing, our custom anchors have width and height
as follows: (22×19), (19×33), (32×27), (26×43), (44×37),
(34×61), (62×51), (43×93), (84×100).

For the definition of the best hyperparameters set, this
paper employs a random search. This process is more efficient
for hyper-parameter optimization than trials on a grid. When
granting random search the same computational budget, it
finds better models by effectively searching a larger, less
promising configuration space [17].

A python code carried out a total of 60 training sessions
randomly changing the hyperparameters before each round
through trial and error. The modifications included the fol-
lowing hyperparameters: batch size, learning rate, momentum,
and burn-in. Additionally, the script also acted on the satu-
ration, angle, and exposure used for data augmentation. The
range and best set of hyperparameters are described in Table
II.

Our setup uses Nesterov Accelerated Gradient as the opti-
mizer. We also use a fixed decay value of 0.0005 to penalize
the weights.

All the training took place in an Ubuntu 18.04 environment
with a Nvidia GeForce GTX 1080 Ti GPU using the Darknet
framework by Alexey Bochkovskiy [18].

TABLE II

HYPERPARAMETERS RANGE

Attribute From To Best

Batch Size 16 112 48

Learning rate 0.001 0.0001 0.0004

Momentum 0.65 0.99 0.93

Burn-in time 200 600 400

Scale 0.005 0.15 0.12

Saturation 0.5 5 2.5

Exposure in time 0.5 5 0.5

Angle rotation 0 180 80

The search obtained the mAP@0.5 results shown in Figure
10. As expected, there was a lot of variation in the outcomes.
Rounds numbers 11, 23, and 48 did not even converge.
Training round number 50 was the best set. Table III shows
complete mAP results through all IoU.

We can observe YOLOv3 has difficulties to indicate pre-
cisely object localization (the mAP is only 9.8% at IoU =
0.75). That is a known characteristic of this algorithm.
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Fig. 10. Random search results at IoU = 0.5.

TABLE III

mAP RESULTS

mAP@IoU=0.50 mAP@IoU=0.75 mAP@IoU=0.50:0.95

0.8463 0.098 0.292

The computational performance test was performed on a
Tesla T4 16G from Google Colab and obtained the average
value of 29.8 frames per second (fps) considering an image
resolution of 608× 608 pixels. This value allows us to use it
in real-time detection.

Figures 11a and 11b show an example with the same image
before and after detection performed by the algorithm.

VI. CONCLUSIONS

This article assessed the YOLOv3 algorithm for object
detection of targets in middle wave infrared images from the
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(a)

(b)

Fig. 11. Detection examples.

DcOMPASS sensor.
The numbers reached by the algorithm in terms of pre-

cision and computational time demonstrates its potential to
be applied in real operational activities. The use of this type
of technique can collaborate to improve the performance of
military missions with unmanned aerial vehicles.

It could be used in the processing of videos after the flight
to mark scenes, or, due to its speed, it can also be successfully
used to detect targets in real time. That is a great support to
reduce the workload of the sensor operator.

A disadvantage was its inability to generalize together the
two categories of images, whitehot and blackhot, with the
same performance. The use of two networks each one trained
in a type of image could address the problem.

The specifics of military sensors and the difficulty in
obtaining large sets of data due to issues such as the number
of sensors in operation and the secrecy of missions imposes
the need to be well aware of the performance of these
algorithms, specifically when applied to image types other
than conventional RGB.

As a suggestion for future works, the comparison with other
algorithms such as YoloV4 or EfficientDet over the same
dataset would allow the evaluation of the best network for
operational use.
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