

IV WORKSHOP DE INTELIGÊNCIA, VIGILÂNCIA E RECONHECIMENTO

I ENCONTRO NACIONAL DE TECNOLOGIAS QUÂNTICAS PARA A DEFESA

REALIZAÇÃO

2ª SEMANA DE APLICAÇÕES OPERACIONAIS AO PREPARO E EMPREGO

FORCA AÉREA BRASILEIRA Asas que protegem o país



Minicurso 04

Introdução à Engenharia de Sistemas Espaciais

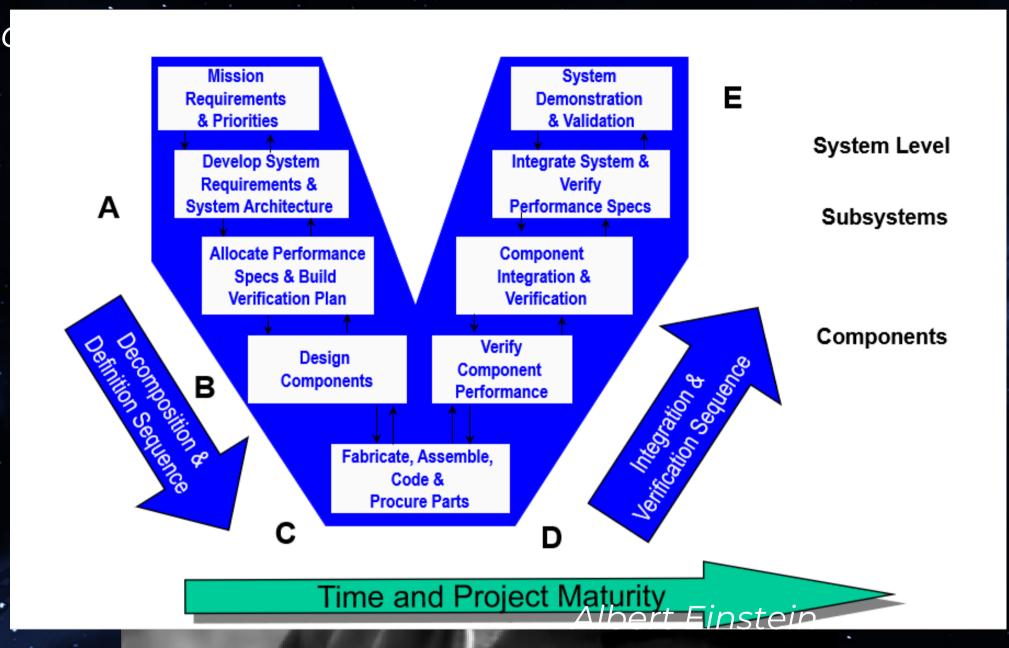
Prof. Dr. Márcio Martins da Silva Costa

Prof. Dr. Márcio M. S. Costa

Academics

- D. Sc. Science and Space Technologies (ITA)
- M.Sc. Electronic and Computer Engineering (ITA)

Professional


- Head Management Lessonia Projects (SAR Caracrá I/II Constellation)
- SSCS-F1/CEI-ITA
- LOM Phase 1 / LabGE-ITA
- CubeSAT SAR Project / NST
- Collaborator Professor at ITA/INPE/NST-SJC
- E2MoC Research Group / CEI-ITA
- PUC-Rio CCE Class 18284

"The Need for Systems Thinking"

"Problems of

created them."

https://twitter.com/AlbertEinstein/status/1706444239926603967/photo/1

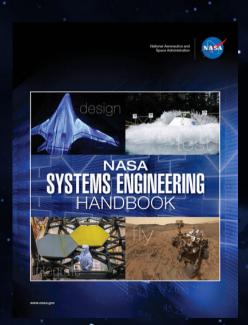
Purpose

Provide general guidance and preliminary information on employing Systems Engineering for the Space Sector

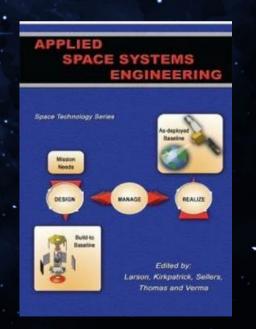
Objectives

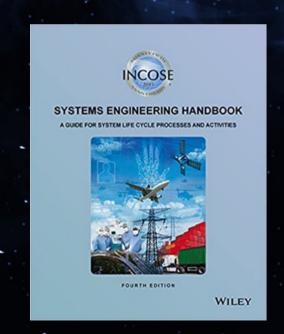
Train, raise awareness, and encourage human resources in the use of Systems

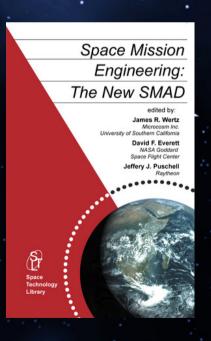
Engineering for the Space Sector



References







Defining "System"

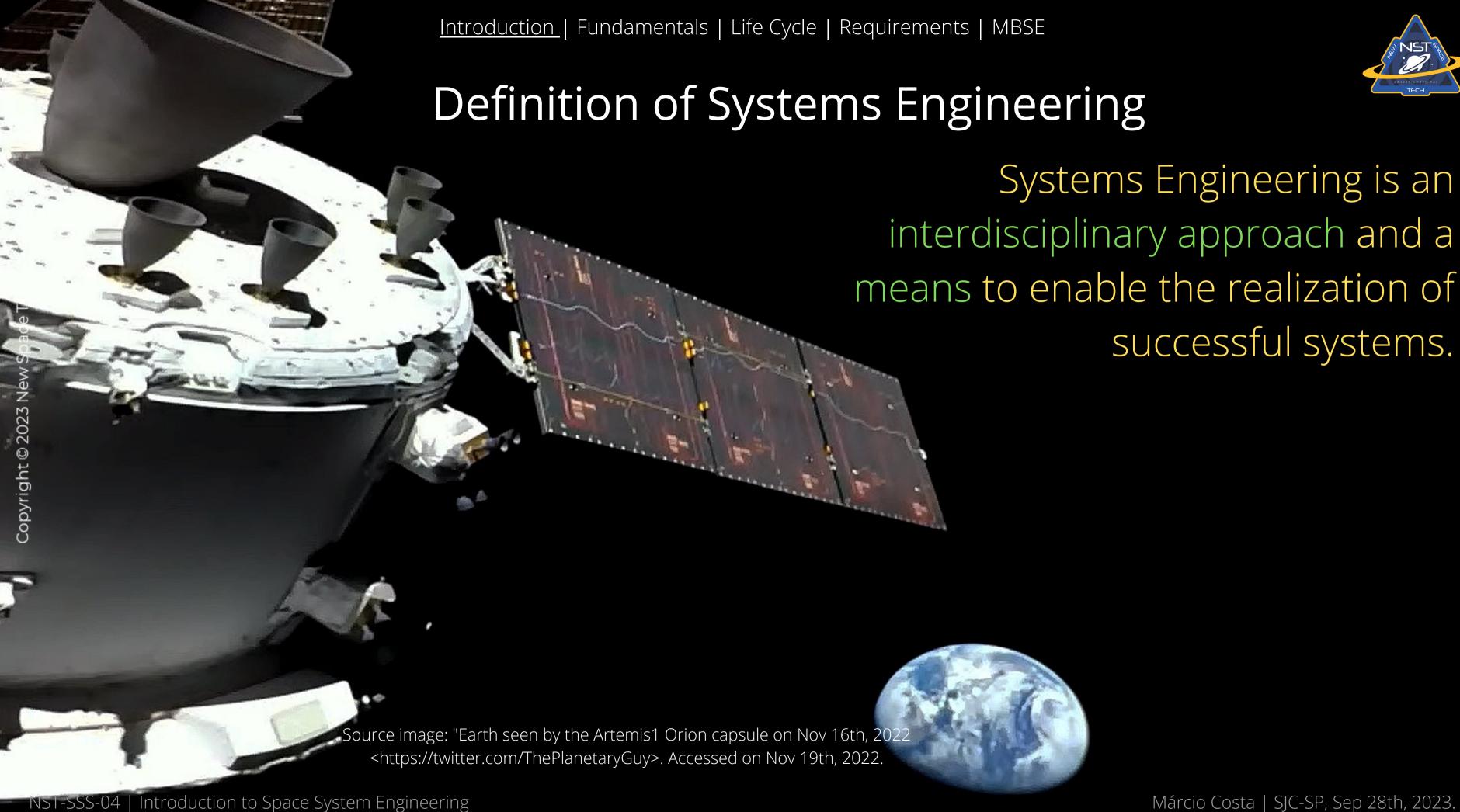
A SYSTEM IS

< parts, components, objects, subsystems, entities><combined, integrated, organized, configured, arranged>

IN A WAY THAT

< creats, enable, motivates>

operties, functions, processes, capabilities, behaviours, dimensions>


NOT

< possessed, exhibited, presented>

BY THE

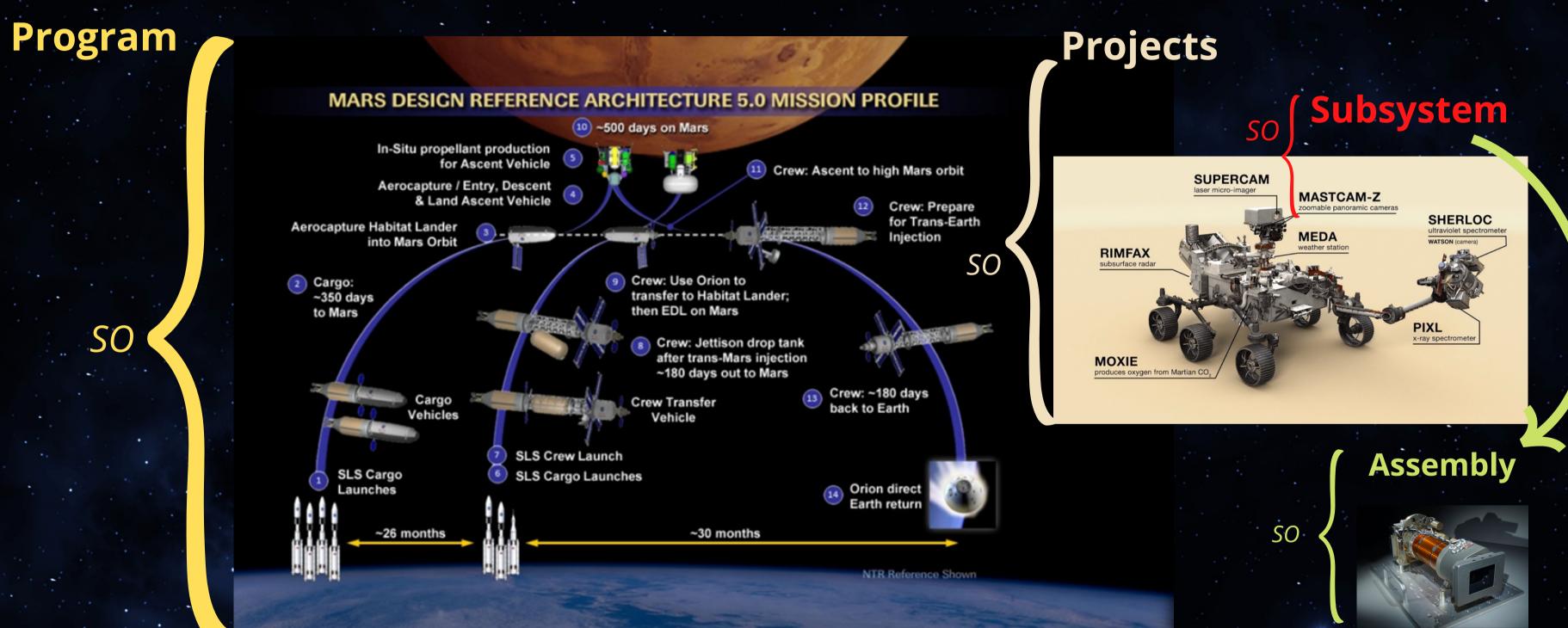
< separate, individual, single>

<parts, components, elements, objects, subsystems, entities>

Definition of Systems Engineering

SE Focuses on

- define customer needs;
- define the required functionality early in the development cycle;
- document the requirements and then proceed with design synthesis and system validation while considering the complete problem.


Source image: "Earth seen by the Artemis1 Orion capsule on Nov 16th, 2022 https://twitter.com/ThePlanetaryGuy. Accessed on Nov 19th, 2022.

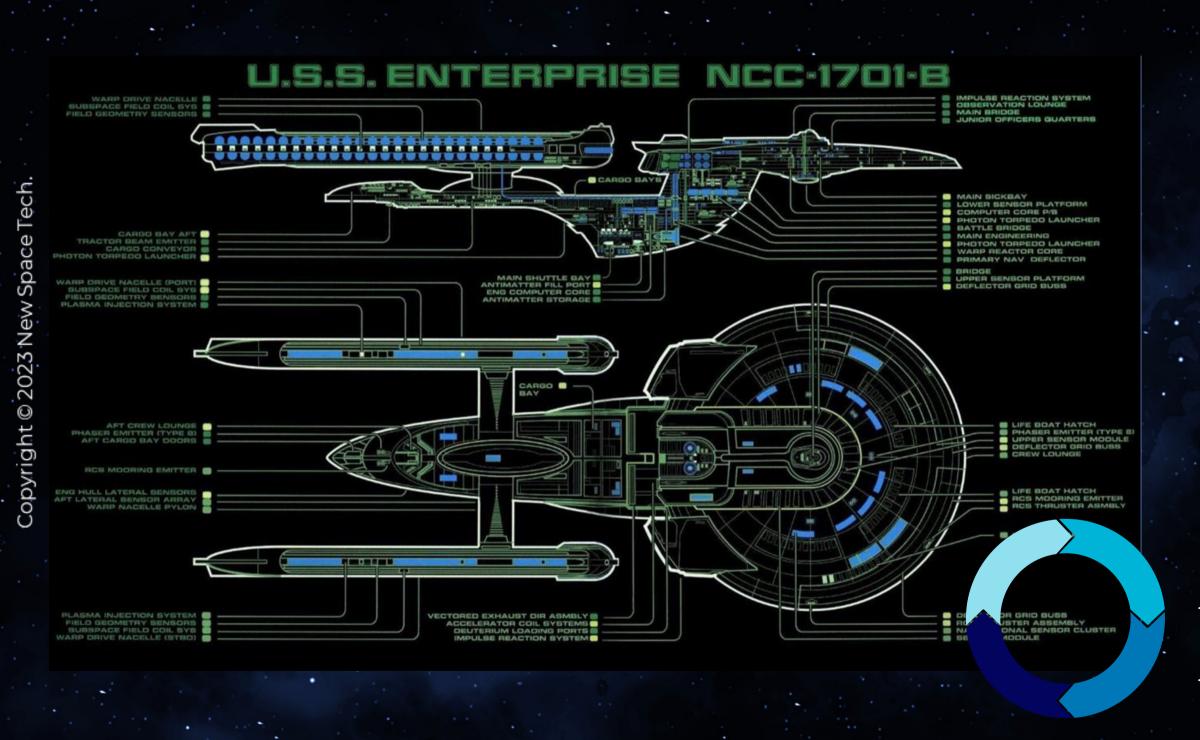
New Space Tech.

Hierachical Relationships for System of Interest (SO)

Source: Adapted from by Dr. Paul Graf, Adjunct Professor at the University of Colorado (SE NASA Course) and NASA JPL

<u>Introduction</u> | Fundamentals | Life Cycle | Requirements | MBSE

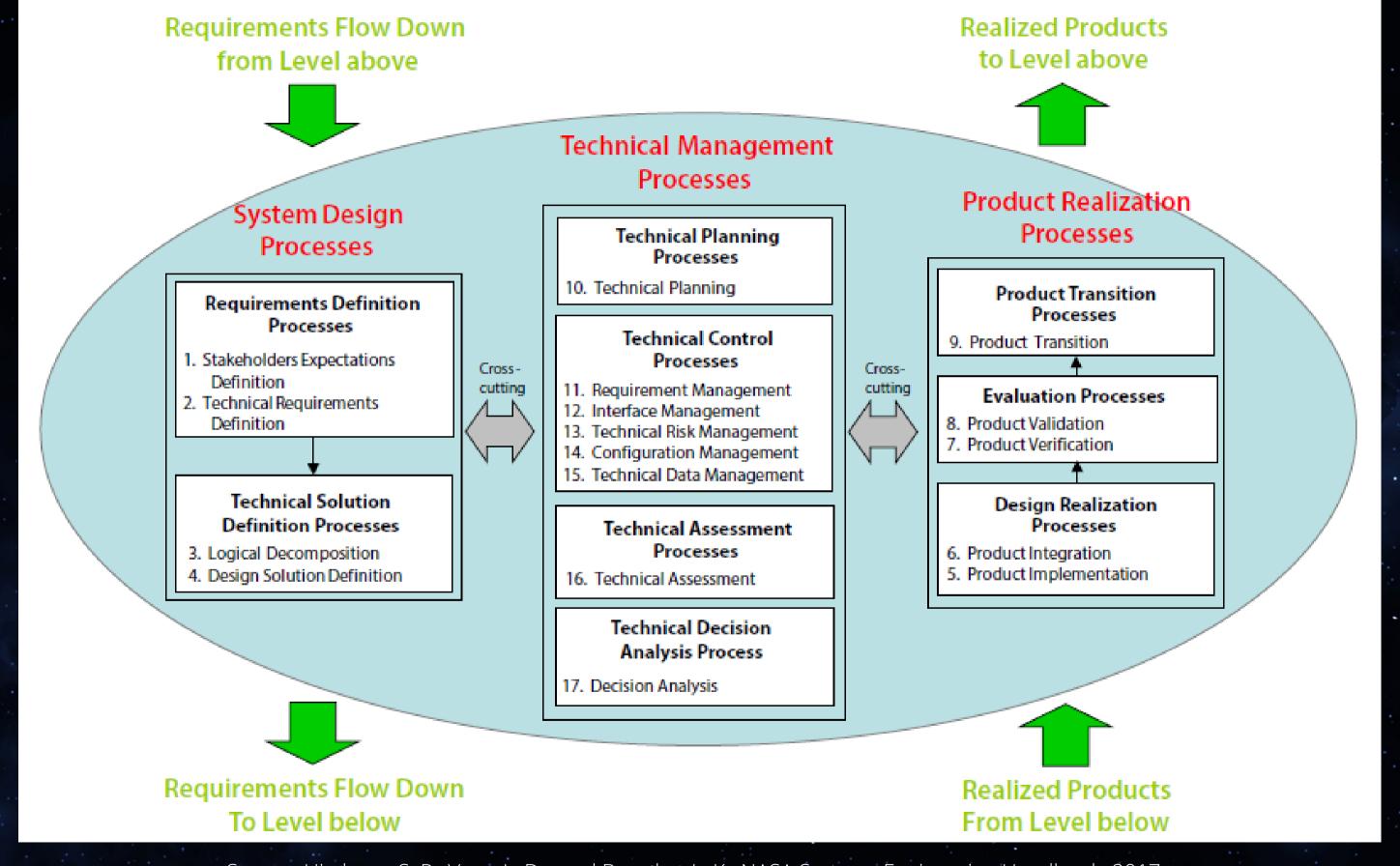
NASA's Mars Perseverance rover acquired this image using its onboard Right Navigation Camera (Navcam). The camera is located high on the rover's mast and aids in driving. This image was acquired on Sept. 27, 2023 (Sol 925) at the local mean solar time of 15:21:25.


Credit: NASA/JPL-Caltech/Paul Byrne."

Scope

"SE requires a systematic and disciplined set of processes that are applied recursively and iteratively for the design, development, operation, maintenance, and closeout of systems throughout the life cycle of the programs and projects.

Systems Engineering - Common Technical Processes


There are three sets of common technical processes in a project:

Systems design,

Technical management, and

Product realization

Source: Hirshorn, S. R., Voss, L. D., and Bromley, L. K.. NASA Systems Engineering Handbook. 2017.

Systems design

A set of recurring processes that result in a validated set of requirements.

Technical management

Bridges between the project management and the technical team.

Product realization

Products are produced and validated against stakeholder expectations.

Systems design

Requirements definitions

Stakeholder Expectations

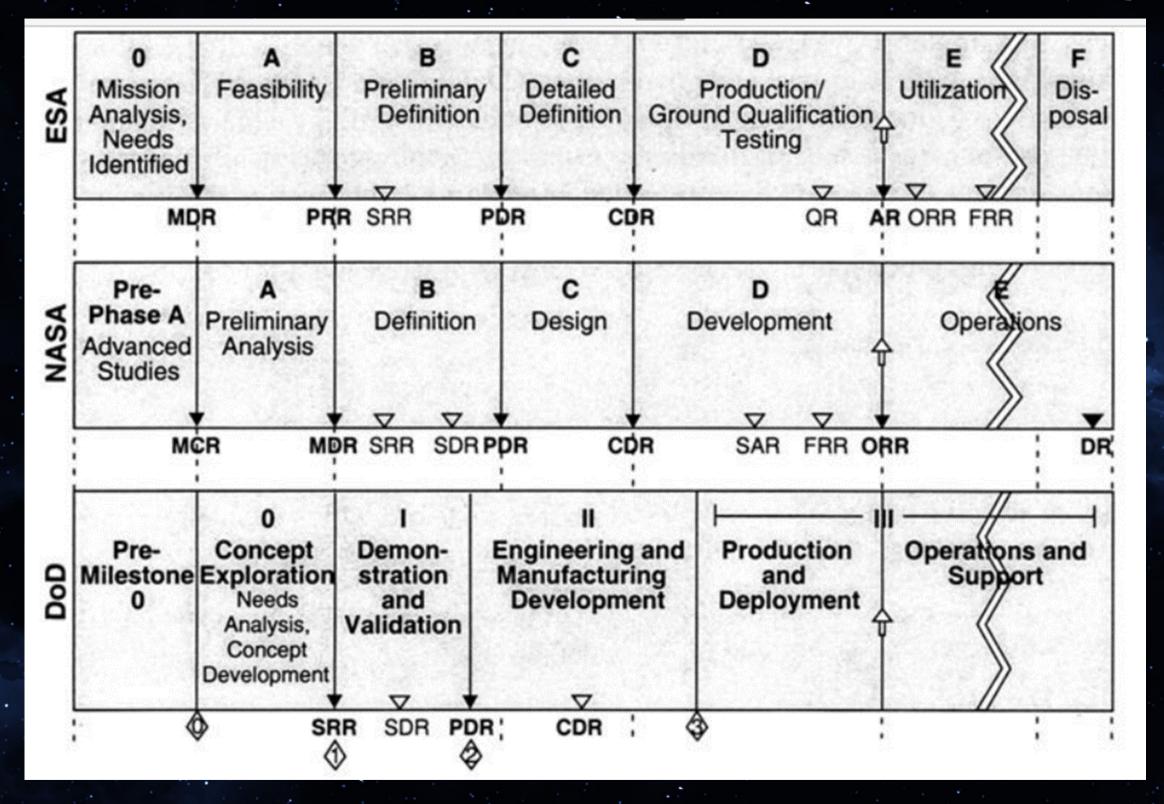
Logical decomposition

Design solution definition

Product realization

Design realization

Evaluation processes



Product transition process

Review - Systems Engineering Phases

Introduction_| Fundamentals | <u>Life Cycle</u> | Requirements | MBSE

NASA Life-Cycle Phases	Appro Formu	val for FORMU	LATION Implement	val for entation	IMPLEMENTATION			
Project Life-Cycle Phases	Pre-Phase A: Concept Studies	Phase A: Concept and Technology Development	Phase B: Preliminary Design and Technology Completion	Phase C: Final Design and Fabrication	Phase D: System Assembly, Integration & Test, Launch & Checkout	Phase E: Operations and Sustainment	Phase F: Closeout	
Project Life- Cycle Gates, Documents, and Major Events	FAD Preliminary Project Requirements	FA Preliminary Project Plan	Baseline Project Plan	/ KDP D∖	KDP E Launch	KDP F	Final Archival of Data	
Agency Reviews Human Space Flight Project Life-Cycle Reviews ^{1,2} Re-flights Robotic Mission Project Life Cycle Reviews ^{1,2} Other Reviews Supporting Reviews	MCF	SRR MDR ⁵	PDR e-enters appropriate life phase if modifications needed between flight PDR ews, Subsystem PD	are ints CDR/ SIF	Inspections and A Refurbishment ORR MRR PL SAR ⁶ SMSR,L	PFAR AR CERR4 DR		

FOOTNOTES

- Flexibility is allowed as to the timing, number, and content of reviews as long as the equivalent information is provided at each KDP and the approach is fully documented in the Project Plan.
- Life-cycle review objectives and expected maturity states for these reviews and the attendant KDPs are contained in Table 2-5 and Appendix D Table D-3 of this handbook
- PRR is needed only when there are multiple copies of systems. It does not require an SRB. Timing is notional.
- 4. CERRs are established at the discretion of program.
- For robotic missions, the SRR and the MDR may be combined.
- 6. SAR generally applies to human space flight.
- 7. Timing of the ASM is determined by the MDAA. It may take place at any time during Phase A.
- A Red triangles represent life-cycle reviews that require SRBs. The Decision Authority, Administrator, MDAA, or Center Director may request the SRB to conduct other reviews.

ACRONYMS

ASM – Acquisition Strategy Meeting

CDR - Critical Design Review

CERR – Critical Events Readiness Review DR – Decommissioning Review

DRR – Disposal Readiness Review

FA - Formulation Agreement

FAD – Formulation Authorization Document

FRR - Flight Readiness Review

KDP - Key Decision Point

LRR – Launch Readiness Review LV – Launch Vehicle

MCR – Mission Concept Review

MDR - Mission Definition Review

MRR – Mission Readiness Review

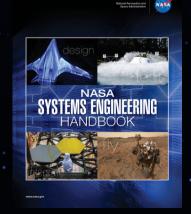
ORR - Operational Readiness Review

PDR – Preliminary Design Review

PFAR – Post-Flight Assessment Review PLAR – Post-Launch Assessment Review

PRR – Production Readiness Review

SAR - System Acceptance Review


SDR – System Definition Review SIR – System Integration Review

SMSR – Safety and Mission Success Review

SRB – Standing Review Board

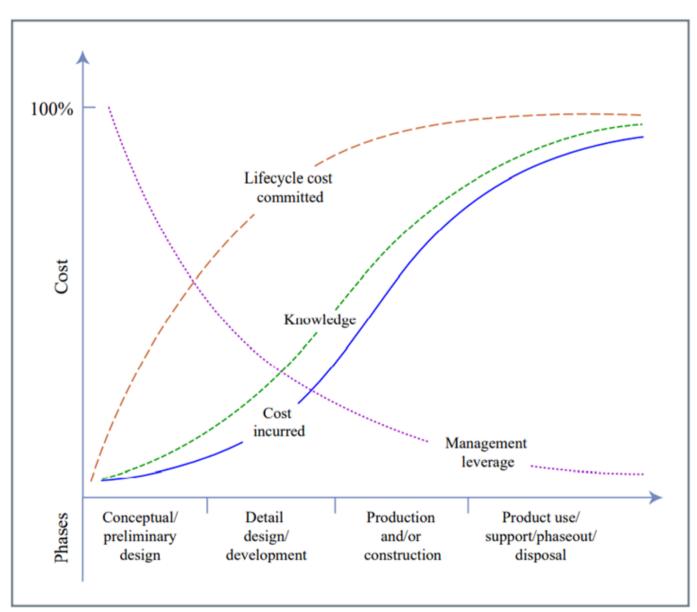
SRR - System Requirements Review

FIGURE 3.0-1 NASA Space Flight Project Life Cycle from NPR 7120.5E

Phase		Purpose	Typical Outcomes		
Pre-Formulation	Pre-Phase A Concept Studies	To produce a broad spectrum of ideas and alternatives for missions from which new programs/projects can be selected. Determine feasibility of desired system, develop mission concepts, draft system-level requirements, assess performance, cost, and schedule feasibility; identify potential technology needs, and scope.	Feasible system concepts in the form of simulations, analysis, study reports, models, and mock-ups		
			△ MCR		

PROBLEMS

EXPECTATIONS


CONCEPTS

https://www.nasa.gov/sites/default/files/thumbnails/image/seh_figure_2-2_1_se_phases.png

Committed Costs in Concept Design

"It has been stated that 80% of the eventual costs of a system are determined before the first 20% of the funds have actually been spent."

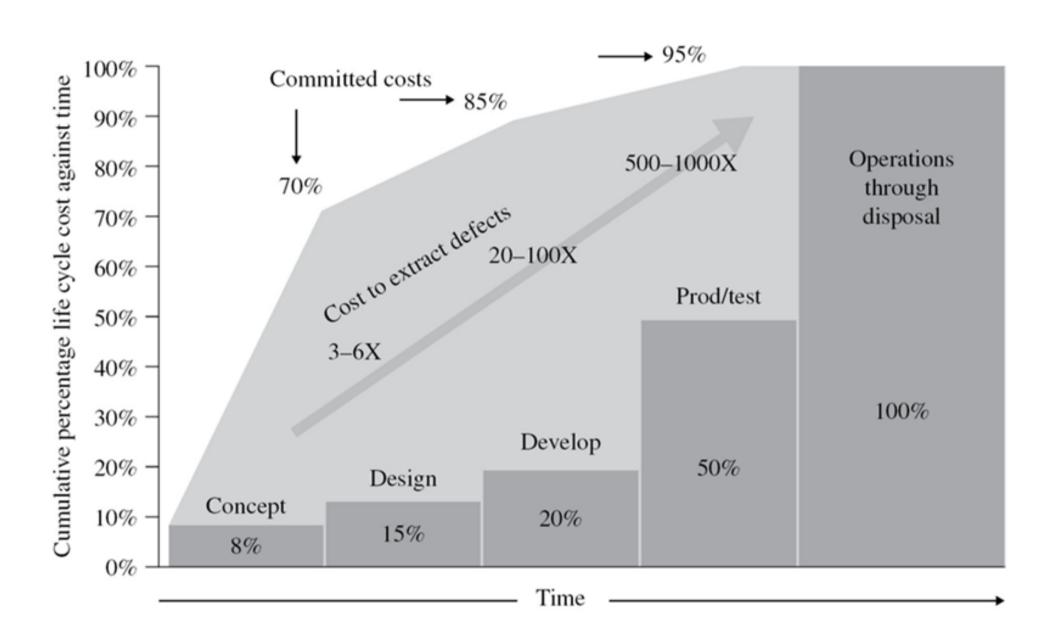
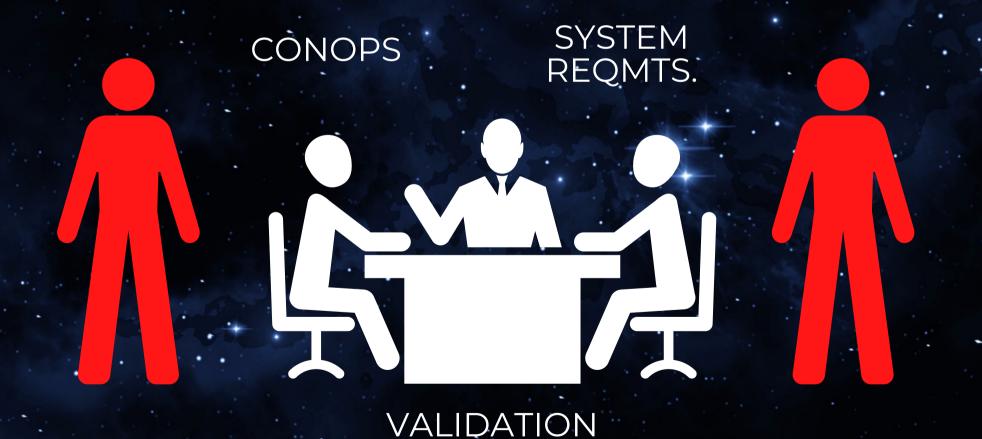


Figure 1. Notional view of costs committed vs. costs incurred over time (Adapted from W. J. Fabrycky, Life Cycle Cost and Economic Analysis, Prentice-Hall, NJ, 1991.)

Source: https://webb.nasa.gov/courses/aeronautics-and-astronautics/16-892j-space-system-architecture-and-design-fall-2004/. Accessed on Mar 21th, 2022; and INCOSE-TP-2003-002-03 INCOSE SYSTEMS ENGINEERING HANDBOOK, version 3 June 2006



Formulation

Phase A

Concept and Technology Development To determine the feasibility and desirability of a suggested new system and establish an initial baseline compatibility with NASA's strategic plans. Develop final mission concept, system-level requirements, needed system technology developments, and program/project technical management plans. System concept definition in the form of simulations, analysis, engineering models and mock-ups, and trade study definition

PLAN

https://www.nasa.gov/sites/default/files/thumbnails/image/seh_figure_2-2_1_se_phases.png

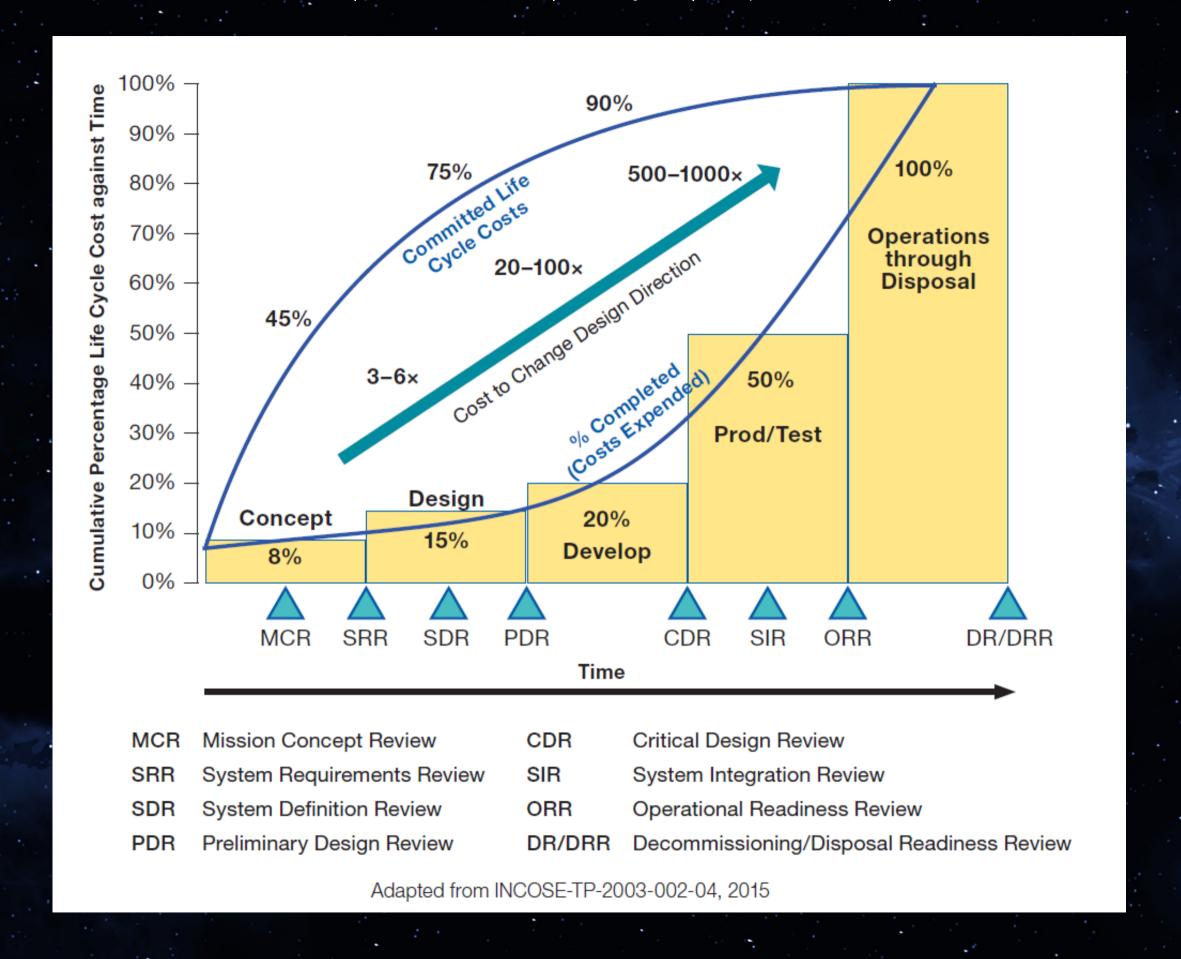
Formulation

Phase B

Preliminary Design and Technology Completion To define the project in enough detail to establish an initial baseline capable of meeting mission needs. Develop system structure end product (and enabling product) requirements and generate a preliminary design for each system structure end product.

End products in the form of mock-ups, trade study results, specification and interface documents, and prototypes

PRELIM. DESIGN



VERIFICATION PLAN

Phase C Final Design and Fabrication

To complete the detailed design of the system (and its associated subsystems, including its operations systems), fabricate hardware, and code software. Generate final designs for each system structure end product.

End product detailed designs, end product component fabrication, and software development

DESIGN-TO-SPECS

BUILD-TO-SPECS

VERIFICATION PROCEDURES

https://www.sstl.co.uk/media-hub/latest-news/2017/sstl-selected-to-build-third-batch-of-galileo-navigation-payloads

Phase D
System
Assembly,
Integration and
Test, Launch

To assemble and integrate the system (hardware, software, and humans), meanwhile developing confidence that it is able to meet the system requirements. Launch and prepare for operations. Perform system end product implementation, assembly, integration and test, and transition to use.

Operations-ready system end product with supporting related enabling products

AS-BUILT

AS-VERIFIED

ANOMALIES

http://www.inpe.br/noticias/noticia.php?Cod_Noticia=3162

Phase E

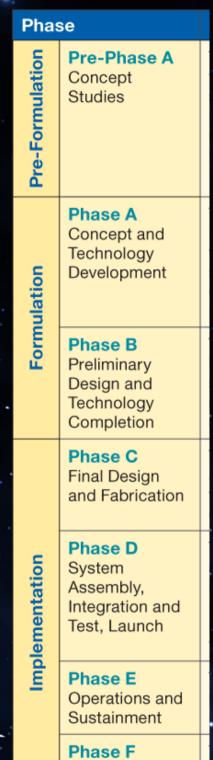
Operations and Sustainment To conduct the mission and meet the initially identified need and maintain support for that need. Implement the mission operations plan. Desired system

AS-DEPLOYED

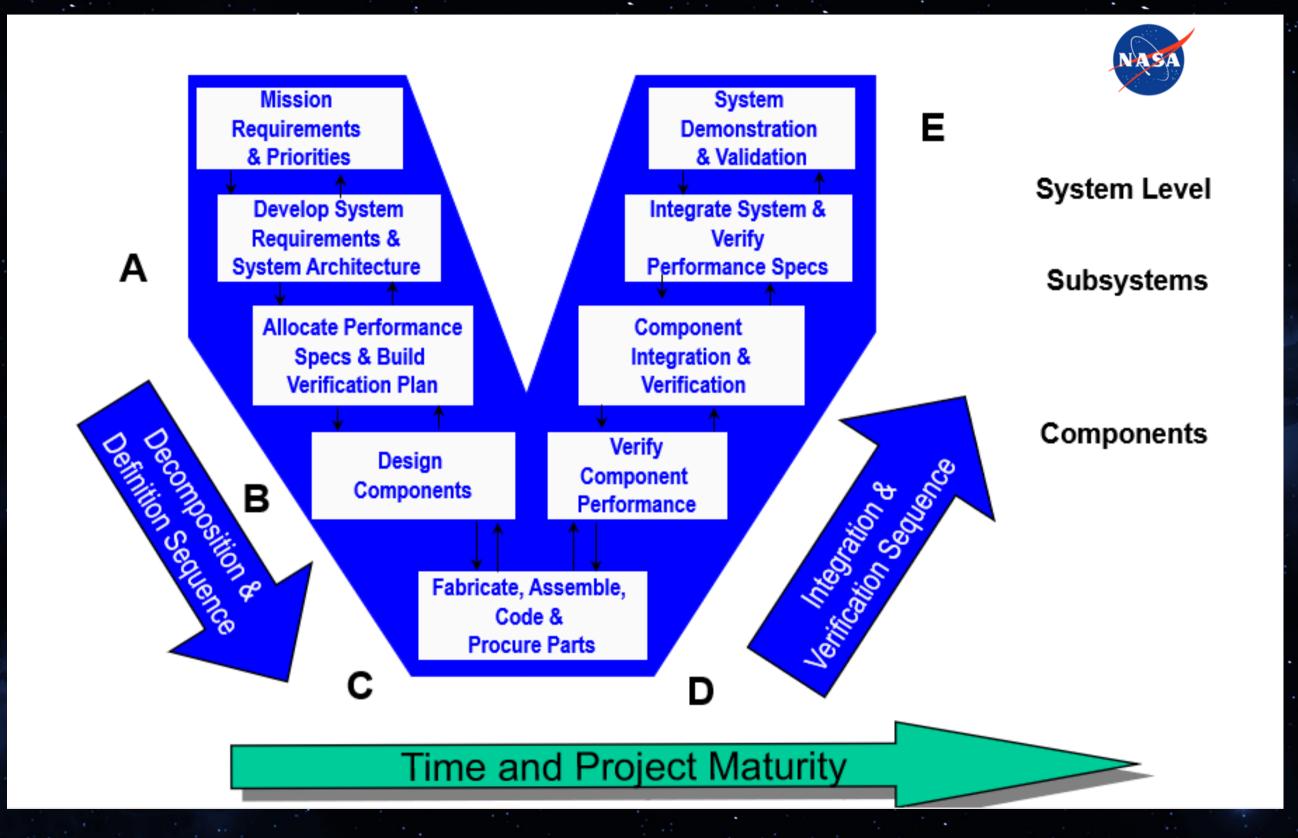
AS-OPERATED

https://portalbids.com.br/2023/01/13/sport-sinal-satelite/

Phase F Closeout To implement the systems decommissioning/disposal plan developed in Phase E and perform analyses of the returned data and any returned samples.


Product closeout

https://portalbids.com.br/2023/01/13/sport-sinal-satelite/


Sept. 15, 2017

Closeout

Credits image: NASA SE Course

Verification and Validation

Product Verification and Product Validation processes may be similar in nature, but the objectives are fundamentally different:

Verification of a product shows proof of compliance with requirements—that the product can meet each "shall" statement as proven though performance of a test, analysis, inspection, or demonstration.

Baseline: Specifications, drawings, parts lists, and other setup documentation.

- Related to the set of approved requirements;
- Performed at different stages of the product lifecycle;
- It avoids high costs and performance issues if later modifications are required.

Validation of a product shows that the product fulfills its intended purpose in the intended environment;

- Determine the effectiveness and suitability of the product for use;
- Demonstration by conducting a test, analysis, inspection or demonstration;
- Performed under realistic or simulated conditions;
- Validation is related to the ConOps document;
- It can be performed at each stage of development using stage products.

Cost-effective

The objective of systems engineering is to ensure that the system is designed, built, and operated as economically as possible, considering performance, cost, schedule, and risk.

Objective: try to find designs that provide the best combination of cost and effectiveness.

Indefinition: there are usually many projects that meet the cost-benefit condition.

At each cost-effective solution:

- To reduce cost at constant risk, performance must be reduced.
- To reduce risk at constant cost, performance must be reduced.
- · To reduce cost at constant performance, higher risks must be accepted.
- · To reduce risk at constant performance, higher costs must be accepted.

Pre-Phase A: Concept Studies

a broad spectrum of ideas and alternatives for missions

- Identify risk classification
- Identify initial technical risks
- responsibilities in performing mission objectives (i.e., technical team, flight, and ground crew) including training

	LOWEST	HIGH	HIGHEST	HIGHEST	HIGHEST			
	RISK	RISK	RISK	RISK	RISK			
_	LOWEST	MEDIUM	HIGH	HIGHEST	HIGHEST			
	RISK	RISK	RISK	RISK	RISK			
LIKELIHOOD	LOWEST	LOW	MEDIUM	HIGH	HIGHEST			
	RISK	RISK	RISK	RISK	RISK			
	LOWEST	LOW	MEDIUM	MEDIUM	HIGH			
	RISK	RISK	RISK	RISK	RISK			
	LOWEST	LOWEST	LOW	LOW	MEDIUM			
	RISK	RISK	RISK	RISK	RISK			
———— CONSEQUENCE →								

Pre-Phase A: Concept Studies a broad spectrum of ideas and alternatives for missions

- Develop plans
 - Develop preliminary SEMP
 - Develop and baseline Technology Development Plan
 - Define preliminary verification and validation approach

Validation Product #	Activity	Objective	Validation Method	Facility or Lab	Phase	Performing Organization	Results
Unique identifier for validation product	Describe evaluation by the customer/ sponsor that will be performed	What is to be accomplished by the customer/ sponsor evaluation	Validation method for the requirement (analysis, inspection, demonstra- tion, or test)	Facility or laboratory used to perform the validation	Phase in which the verification/ validation will be performed ^a	Organization responsible for coordinating the validation activity	Indicate the objective evidence that validation activity occurred
1	Customer/ sponsor will evaluate the candidate displays	1. Ensure legibility is acceptable 2. Ensure overall appearance is acceptable	Test	xxx	Phase A	xxx	TPS 123456

a. Example: (1) during product selection process, (2) prior to final product selection (if COTS) or prior to PDR, (3) prior to CDR, (4) during box-level functional, (5) during system-level functional, (6) during end-to-end functional, (7) during integrated vehicle

Source image: Available at https://www.nasa.gov/seh/appendix-e_creating-the-validation-plan. Accessed on Nov 19th, 2022.

TABLE 3.0-1 SE Product Maturity from NPR 7123.1

Introduction | Fundamentals | <u>Life Cycle</u> | Requirements | MBSE

TABLE 3.0-1 SE Product Maturity from NPR /123.1											
			Formu	ulation	Implementation						
	Uncoupled/ Loosely Coupled	KDP 0		KDPI	Periodic KD	Ps					
Products	Tightly Coupled Programs	KDP 0			KDP I	KDP II		KDP III		Periodic KDPs	
	Projects and Single Project Programs	Pre-Phase A		Phase B	Phase C		Phase D		Phase E	Phase F	
		KDP A	KDP B		KDP C	KDP D		KDP E		KDP F	
		MCR	SRR	MDR/SDR	PDR	CDR	SIR	ORR	FRR	DR	DRR
Stakeholder identification and		**Baseline	Update	Update	Update						
Concept definition		**Baseline	Update	Update	Update	Update	1				
Measure of effectiveness definition		**Approve									
Cost and schedule for technical		Initial	Update	Update		Update	Update	Update	Update	Update	Update
SEMP1		Preliminary	**Baseline	**Baseline	Update	Update	Update				
Requ	irements	Preliminary	**Baseline	Update	Update	Update			j		
Technical Performance Measures definition				**Approve							
Arch	itecture definition			**Baseline							
- 1 - 1	ation of requirements to lower level			**Baseline							
Required leading indicator trends				**Initial	Update	Update	Update				
Design solution definition				Preliminary	**Preliminary	**Baseline	Update	Update			
Interface definition(s)				Preliminary	Baseline	Update	Update		Į.		
Implementation plans (Make/ code, buy, reuse)				Preliminary	Baseline	Update					
Integ	ration plans		5	Preliminary	Baseline	Update	**Update				
Verification and validation plans		Approach		Preliminary	Baseline	Update	Update				
,											

Source: Available at https://www.nasa.gov/seh/3-project-life-cycle. Accessed on Nov 19th, 2022.

Systems Engineering Management Plan (SEMP)

SEMP is the foundation document for the technical and engineering activities conducted during the project.

The SEMP conveys information to all of the personnel on the technical integration methodologies and activities for the project within the scope of the project plan.

Source: Available at https://www.nasa.gov/seh/appendix-jsemp-content-outline. Accessed on Nov 19th, 2022.

Source image: Available at https://www.nasa.gov/press-release/nasa-s-webb-reaches-alignment-milestone-optics-working-successfully. Accessed on Nov 19th, 2022.

The SEMP includes the following three general sections:

- Technical program planning and control, which describe the processes for planning and control of the engineering efforts for the design, development, test, and evaluation of the system.
- **Systems engineering processes**, which include specific tailoring of the systems engineering process as described in the NPR, implementation procedures, trade study methodologies, tools, and models to be used.
- Engineering specialty integration describes the integration of the technical disciplines' efforts into the systems engineering process and summarizes each technical discipline effort and cross references each of the specific and relevant plans.

Some additional important points on the SEMP:

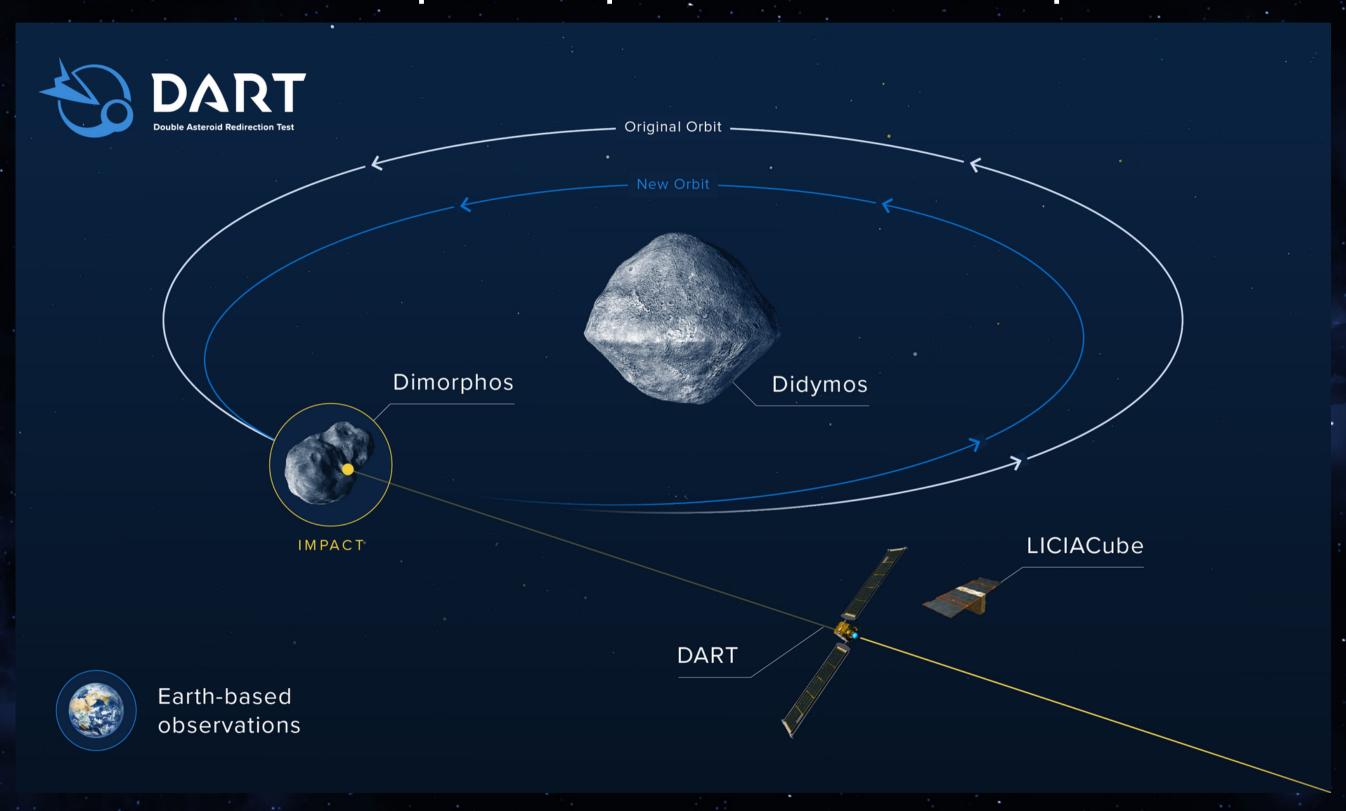
- The SEMP is a living document.
- The initial SEMP is used to establish the technical content of the engineering work early in the Formulation Phase for each project and updated as needed throughout the project life cycle.

	Systems Engineering M	anagement Plan
	(Provide a title for the candidate pro a short title or proposed acronym in p	
Designated	Governing Authority/Technical Authority	Date
Program/P	roject Manager	Date
Chief Engir	neer	Date
		Date
		Date

Source: Available at https://www.nasa.gov/seh/appendix-jsemp-content-outline. Accessed on Nov 19th, 2022.

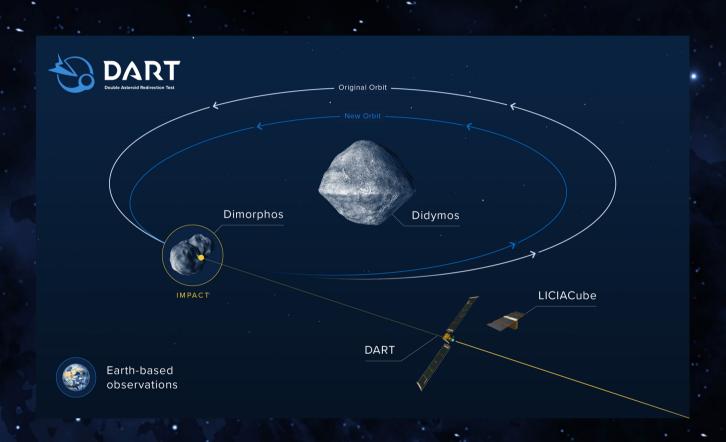
TABLE J-1 Guidance on SEMP Content per Life-Cycle Phase											
SEMP Section	SEMP Subsec-	Pre-Phase A KDP A	Phase A KDP B		Phase B Phase C KDP C KDP D		Phas KDF		Phase E KDP F	Phase F	
	tion	MCR	SRR	SDR/MDR	PDR	CDR	SIR	ORR	MRR/FRR	DR	DRR
Purpose and Scope		Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
Applicable Documents		Initial	Initial	Initial	Final	Final	Final	Final	Final	Final	Final
Technical Summary		Final	Final	Final	Final	Final	Final	Final	Final	Final	Final
System Description		Initial	Initial	Initial	Final	Final	Final	Final	Final	Final	Final
System Structure	Product Integration	Define thru SDR timeframe	Define thru SDR timeframe	Define thru SDR timeframe	Define thru SIR	Define thru SIR	Define thru SIR	Define sustaining thru end of program	Define sustaining thru end of program	Define sustaining thru end of program	Define sustaining thru end of program
	Planning Context	Define thru SDR timeframe	Define thru SDR timeframe	Define thru SDR timeframe	Define thru SIR	Define thru SIR	Define thru SIR	Define sustaining thru end of program	Define sustaining thru end of program	Define sustaining thru end of program	Define sustaining thru end of program
	Boundary of Technical Effort	Initial	Initial	Initial	Final	Final	Final	Final	Final	Final	Final
	Cross References	Initial	Initial	Initial	Final	Final	Final	Final	Final	Final	Final
Technical Effort Integration	Responsi- bility and Authority	Define thru SDR timeframe	Define thru SDR timeframe	Define thru SDR timeframe	Define thru SIR timeframe	Define thru SIR timeframe	Define thru SIR timeframe	Define sustain- ing Roles and Responsibilities through end of program	Define sus- taining Roles and Respon- sibilities through end of program	Define sus- taining Roles and Respon- sibilities through end of program	
	Contractor Integration	Define acquisitions needed		Define insight/ oversight through SIR timeframe				Define sustaining insight/ oversight through end of program			
	Support Integration	Define acquisitions needed		Define insight/ oversight through SIR timeframe				Define sus- taining insight/ oversight through end of program			

Source: Available at https://www.nasa.gov/seh/appendix-jsemp-content-outline. Accessed on Nov 19th, 2022.

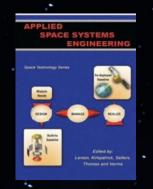


Section Subsec- KI		Pre-Phase A KDP A	A Phase A KDP B		Phase B Phase C KDP C KDP D		Phase D KDP E		Phase E KDP F	Phase F	
	tion	MCR	SRR	SDR/MDR	PDR	CDR	SIR	ORR	MRR/FRR	DR	DRR
Common Technical Pro- cesses Imple- mentation		Processes defined for Concept Develop- ment and Formulation		Processes defined for the Design Phase		Processes added for the integration and Operations Phase		Update Operations processes. Define close out processes and sustaining engineering processes			
Technology Insertion		Define technologies to be developed		Define deci- sion process for on ramps and off ramps of technology efforts				Define technol- ogy sustaining effort through end of program.			
Additional SE Functions and Activities	System Safety	Define process through CDR						Define sustain- ing Roles and Responsibilities through end of program			
	Engineering Methods and tools	Define process through CDR						Define sustain- ing Roles and Responsibilities through end of program			
	Specialty Engineering	Define process through CDR						Define sustain- ing Roles and Responsibilities through end of program			
Integration with the Project Plan and Technical Resource Allocation		Define through SDR timeframe			Define through SIR	Define through SIR	Define through SIR	Define sustaining through end of program	Define sustaining through end of program	Define sustaining through end of program	Define sustaining through end of program
Compliance Matrix (Appendix H.2 of SE NPR)		Initial	Initial	Initial	Final	Final	Final	Final	Final	Final	Final
Appendices		As required	As required	As required	As required	As required	As required	As required	As required	As required	As required
Templates		As required	As required	As required	As required	As required	As required	As required	As required	As required	As required
References		As required	As required	As required	As required	As required	As required	As required	As required	As required	As required

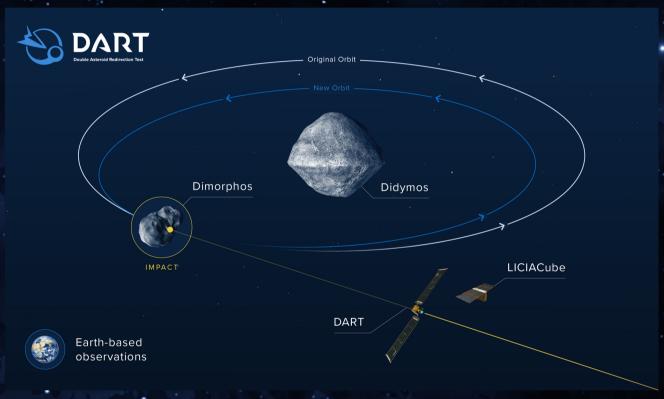
Source: Available at https://www.nasa.gov/seh/appendix-jsemp-content-outline. Accessed on Nov 19th, 2022.


Source: Available at https://dart.jhuapl.edu/Mission/index.php. Accessed on Nov 19th, 2022.

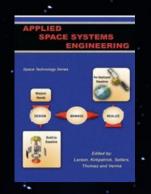
1° Executive summary


- mission
- organizations' roles and responsibilities
- key capabilities and performance characteristics the stakeholders want.

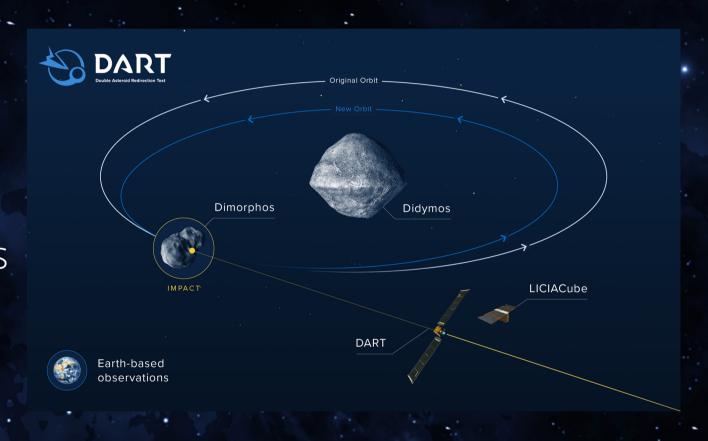
2° Mission description


- Describe the mission,
- its goals and objectives, and
- the underlying mission
- business rationale.
- Identify relevant stakeholders and their main expectations.

3° System operational context and reference operational architecture


- system's boundary
- initial reference architecture based on what similar systems have used.
- Describe the 'as-is" and "to-be" contexts to help clarify the conceived system's value.

4° System drivers and constraints

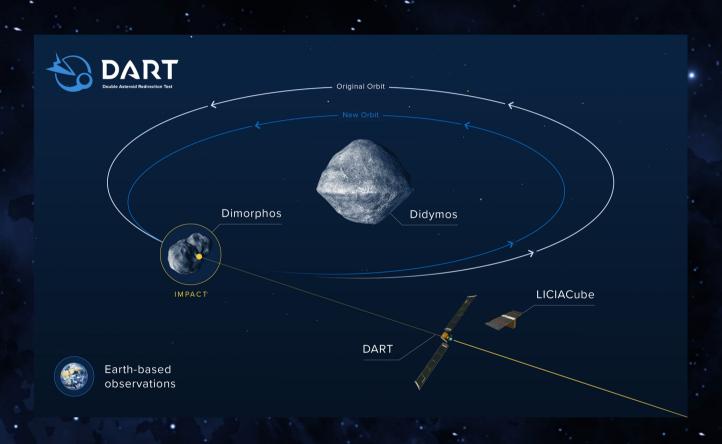

- Describe performance drivers and constraints;
- constraints resulting from the existing systems and infrastructure;
- doctrine (policy, procedures, and processes);
- organizational roles

5° Operational scenarios

- Create the main operational scenarios to support capabilities the stakeholders expect,
- Use language and graphics to ensure that systems engineers understand the stakeholders' expectations.
- Develop timelines for each operational scenario to gain insights into other concepts for partitioning and implementation.

6° Proposed system operational architecture

 Document changes to partitioning of the system, its elements and subelements, in a proposed system operational architecture.


Source: Available at https://dart.jhuapl.edu/Mission/index.php. Accessed on Nov 19th, 2022.

7° Organizational and business impact

 Analyze and present the effects of a changed operational architecture on legacy doctrine to ensure appropriate decision making.

8° Risks and technology readiness

- Include technology
 readiness levels for the
 principal implementing
 concepts.
- Also assess schedule and funding risks resulting from the proposed approach.

Space Systems
ENGINEERING

Space Perhonology Serves

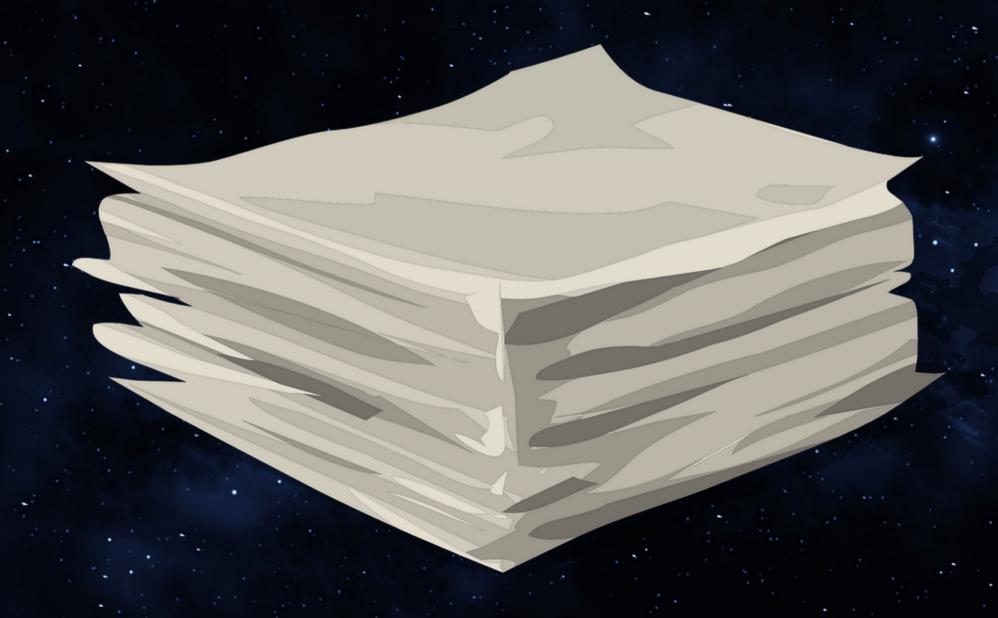
MALE

Largon, Anappins, Spilers,
Thomas and Verma

86 CHAPTER 3—CONCEPT OF OPERATIONS AND SYSTEM OPERATIONAL.

ARCHITECTURE

TABLE 3-8. Suggested Outline for a System Concept of Operations. This table consolidates the major aspects of a concept of operations.


Section #	Section Name	Remarks
1	Executive summary	Briefly summarize the mission, organizations' roles and responsibilities, and key capabilities and performance characteristics the stakeholders want. Outline main findings and significant departures from legacy systems; include a brief rationale in each case.
2	Mission description	Describe the mission, its goals and objectives, and the underlying mission and business rationale. Identify relevant stakeholders and their main expectations.
3	System operational context and reference operational architecture	These elements clarify the system's boundary and establish the initial reference architecture based on what similar systems have used. Reference active stakeholders in the context diagram, together with the reference system's elements and sub-elements. Describe the 'as-is" and "to-be" contexts to help clarify the conceived system's value.
4	System drivers and constraints	Describe performance drivers and constraints; constraints resulting from the existing systems and infrastructure; doctrine (policy, procedures, and processes); organizational roles and responsibilities; and regulatory requirements. Explicitly defining drivers helps us assess different concepts for the system, its elements, and its sub-elements.
5	Operational scenarios	Create the main operational scenarios to support capabilities the stakeholders expect, considering the system context and reference operational architecture, as well as the proposed operational architecture. Use language and graphics to ensure that systems engineers understand the stakeholders' expectations. Develop timelines for each operational scenario to understand latency thresholds and gain insights into other concepts for partitioning and implementation.
6	Implementation concepts selected and rationale	Synthesize different ways to partition and carry out stakeholders' intentions in system elements and sub-elements. Document why we selected the preferred application, addressing especially the important drivers and constraints, including funding and schedule.
7	Proposed system operational architecture	Document changes to partitioning of the system, its elements and sub-elements, in a proposed system operational architecture.
8	Organizational and business impact	Analyze and present the effects of a changed operational architecture on legacy doctrine to ensure appropriate decision making. Doctrine includes policy, procedures, and processes; organizational roles and responsibilities; necessary skills and competencies; and workload changes.
9	Risks and technology readiness assessment	Document risks for the proposed operational architecture. Include technology readiness levels for the principal implementing concepts. Also assess schedule and funding risks resulting from the proposed approach.

Source: Available at https://dart.jhuapl.edu/Mission/index.php. Accessed on Nov 19th, 2022.

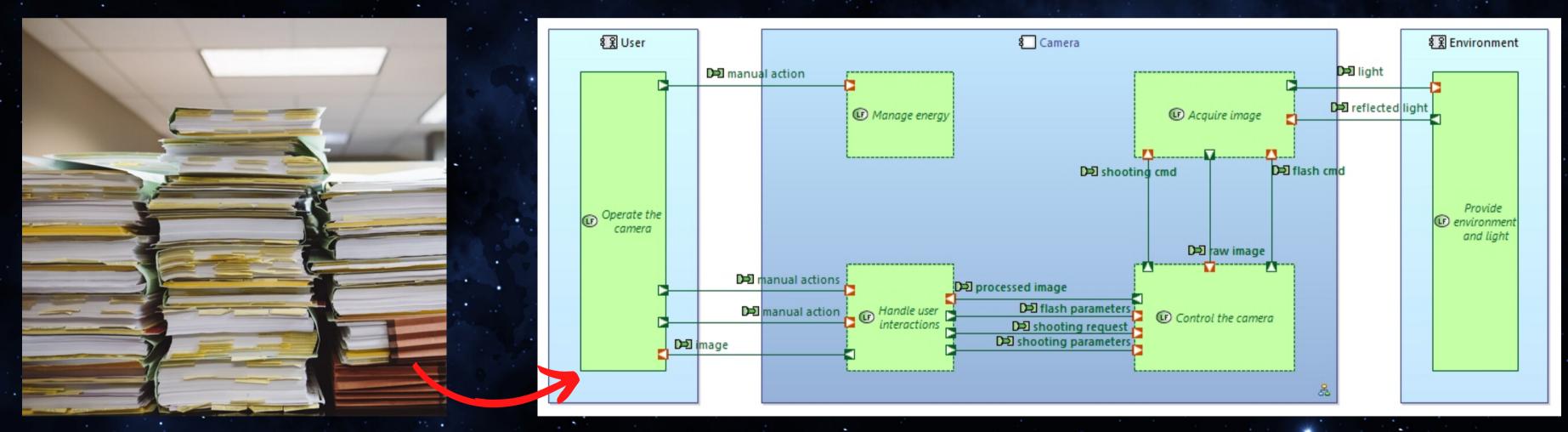
NST SP. Od spot fum for carsus TECH

Writing a good requirement

A good requirement must have:

- Clarity
- Completeness
- Compliance
- Consistency
- Traceability
- Correctness
- Maintainability
- Reliability
- Functionality
- Testability

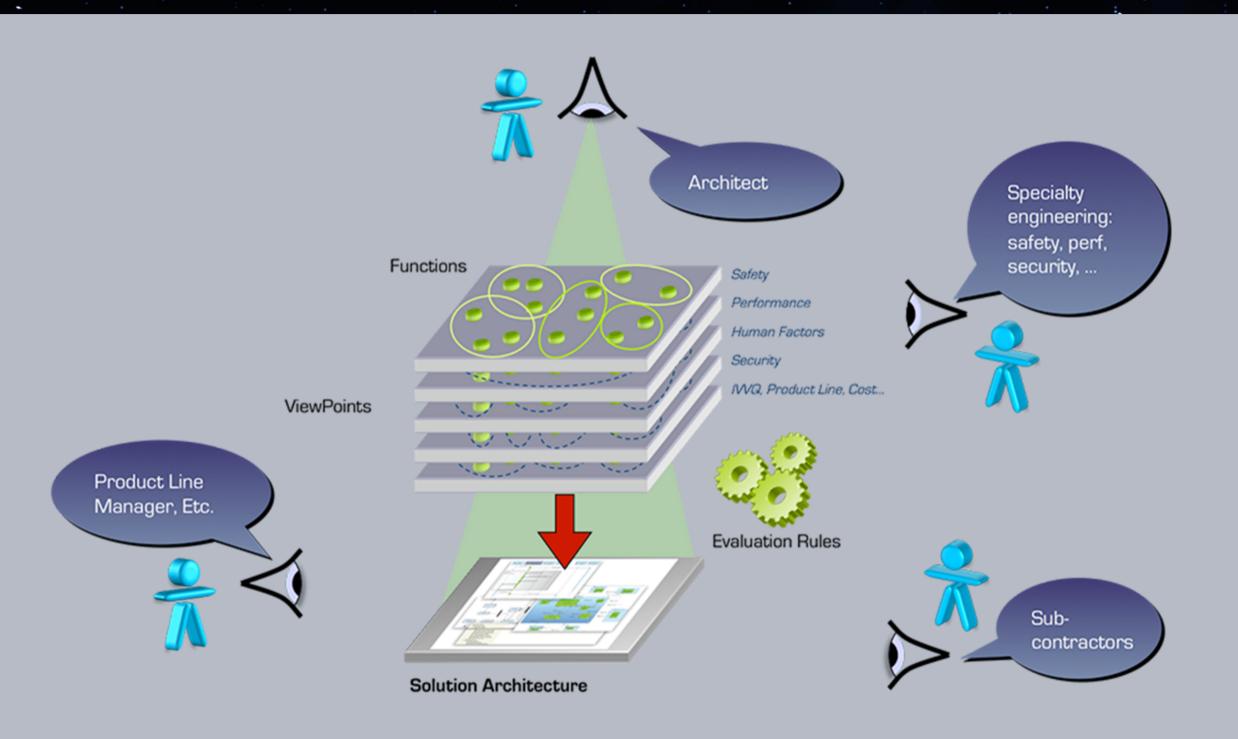
Requirements verification matrix


Require- ment No.		Para- graph	Shall State- ment	Verifi- cation Success Criteria	Verifi- cation Method	Facility or Lab	Phase ^a	Accep- tance Require- ment?	Preflight Accep- tance?	Perform- ing Orga- nization	Results
tifier or each requirement	Document number the requirement is contained within	Paragraph number of the requirement	Text (within reason) of the requirement, i.e., the "shall"	Success criteria for the requirement	Verification method for the requirement (analysis, inspection, demonstration, test)	Facility or laboratory used to perform the verification and validation.	Phase in which the verification and validation will be performed.	Indicate whether this requirement is also ver- ified during initial accep- tance testing of each unit.	Indicate whether this requirement is also ver- ified during any pre-flight or recurring acceptance testing of each unit	Organization responsible for per-forming the verification	Indicate documents that contain the objective evidence that requirement was satisfied
P-1	XXX	3.2.1.1 Capability: Support Uplinked Data (LDR)	System X shall provide a max. ground-to- station uplink of	1. System X locks to forward link at the min and max data rate tolerances 2. System X locks to the forward link at the min and max operating frequency tolerances	Test	XXX	5	Yes	No	XXX	TPS
P-i	xxx	Other paragraphs	Other "shalls" in PTRS	Other criteria	xxx	xxx	xxx	Yes/No	Yes/No	xxx	Memo xxx
S-i or other unique designator	xxxxx (other specs, ICDs, etc.)	Other paragraphs	Other "shalls" in specs, ICDs, etc.	Other criteria	xxx	xxx	xxx	Yes/No	Yes/No	xxx	Report xxx

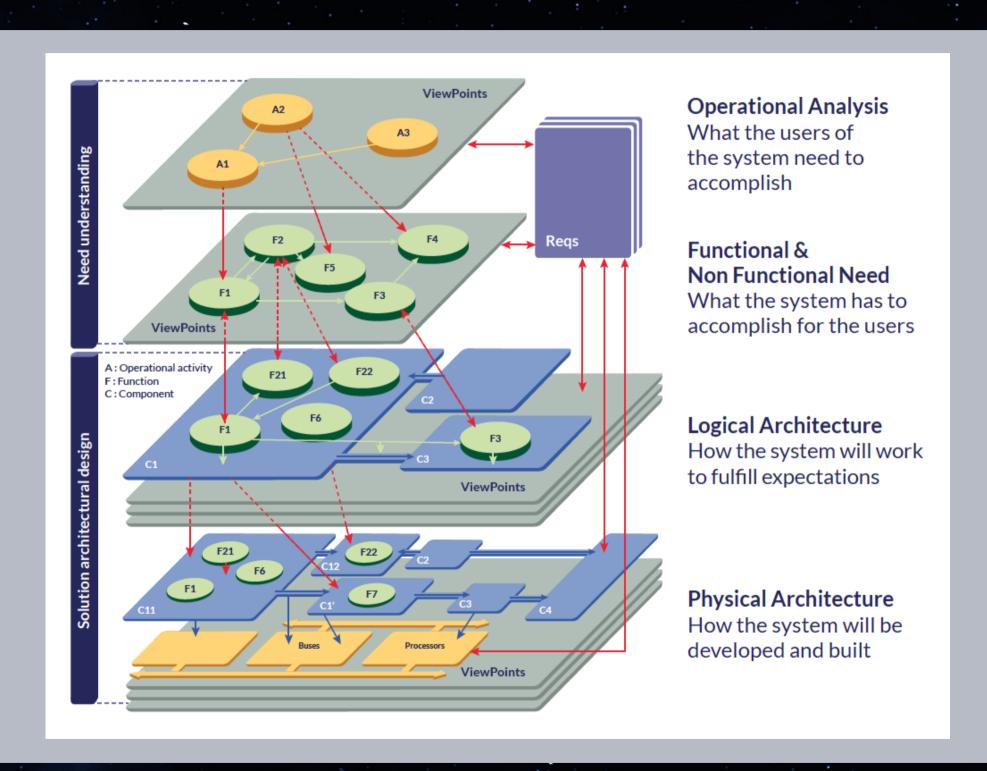
Source: Hirshorn, S. R., Voss, L. D., and Bromley, L. K.. NASA Systems Engineering Handbook. 2017.

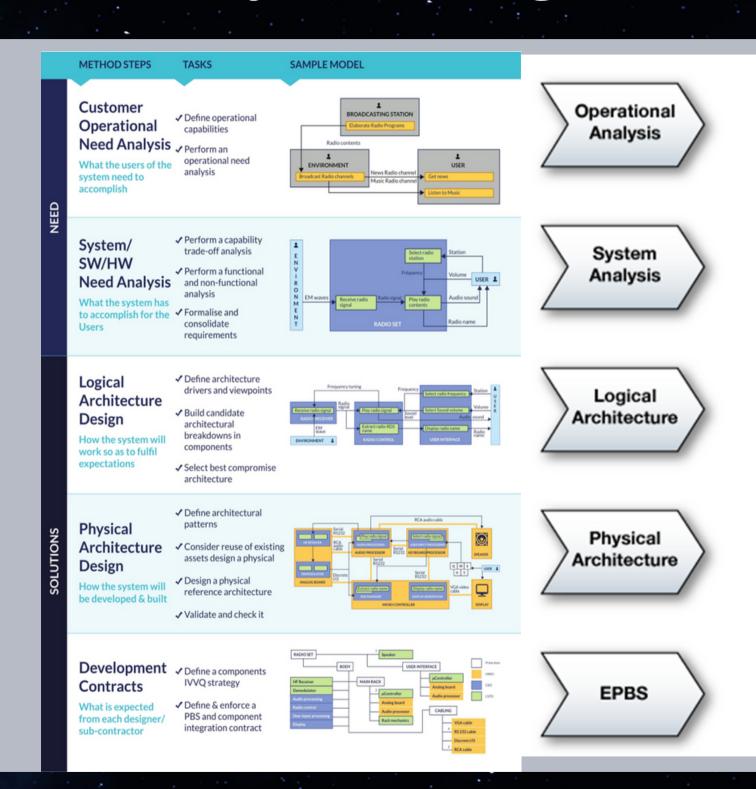
"MBSE is a systems engineering methodology that focuses on creating and exploiting domain models as the primary means of information exchange between engineers, rather than on document-based information exchange."

Source: Available at https://www.omgwiki.org/MBSE/doku.php. Accessed on Nov 19th, 2022.


Source: Available at https://www.eclipse.org/capella/features.html. Accessed on Nov 19th, 2022.

Arcadia Method


Arcadia is a system engineering method based on the use of models, with a focus on the collaborative definition, evaluation and exploitation of its architecture.



Source: Available at https://www.eclipse.org/capella/arcadia.html. Accessed on Nov 19th, 2022.

Define Stakeholder Needs and Environment

Capture and consolidate operational needs from stakeholders Define what the users of the system have to accomplish Identify entities, actors, roles, activities, concepts

Formalize System Requirements

Identify the boundary of the system, consolidate requirements Define what the system has to accomplish for the users Model functional dataflows and dynamic behaviour

Develop System Logical Architecture

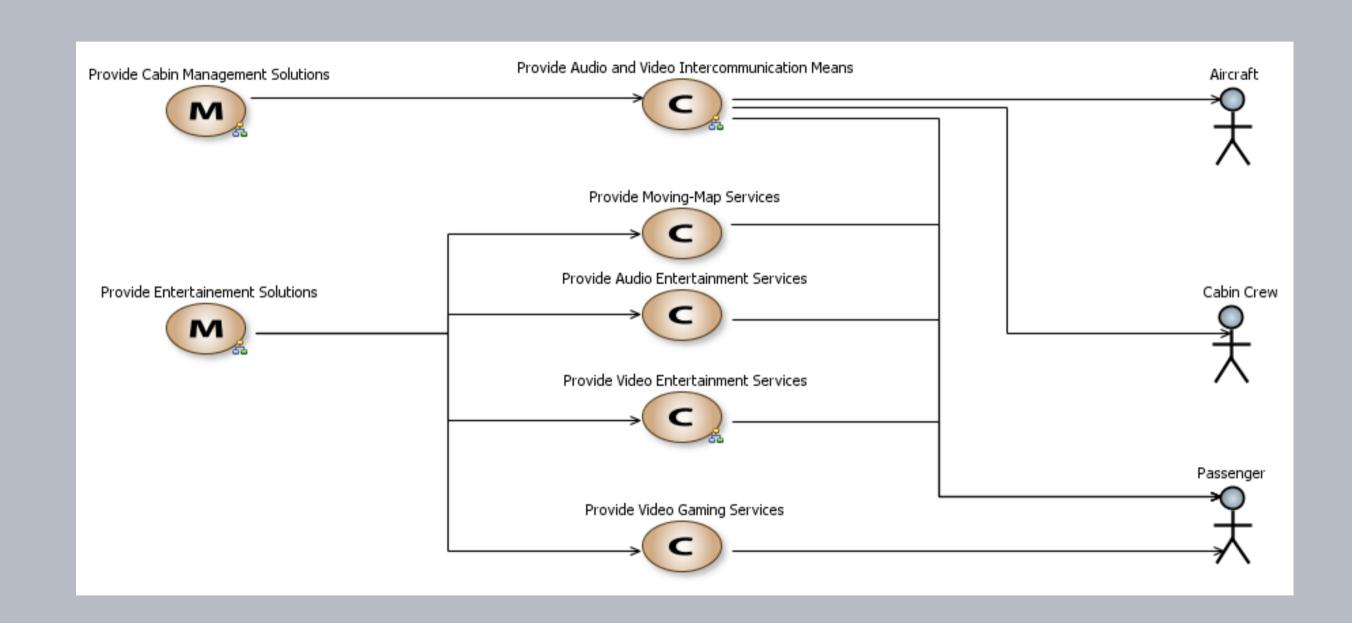
See the system as a white box Define how the system will work so as to fulfill expectations Perform a first trade-off analysis

Develop System Physical Architecture

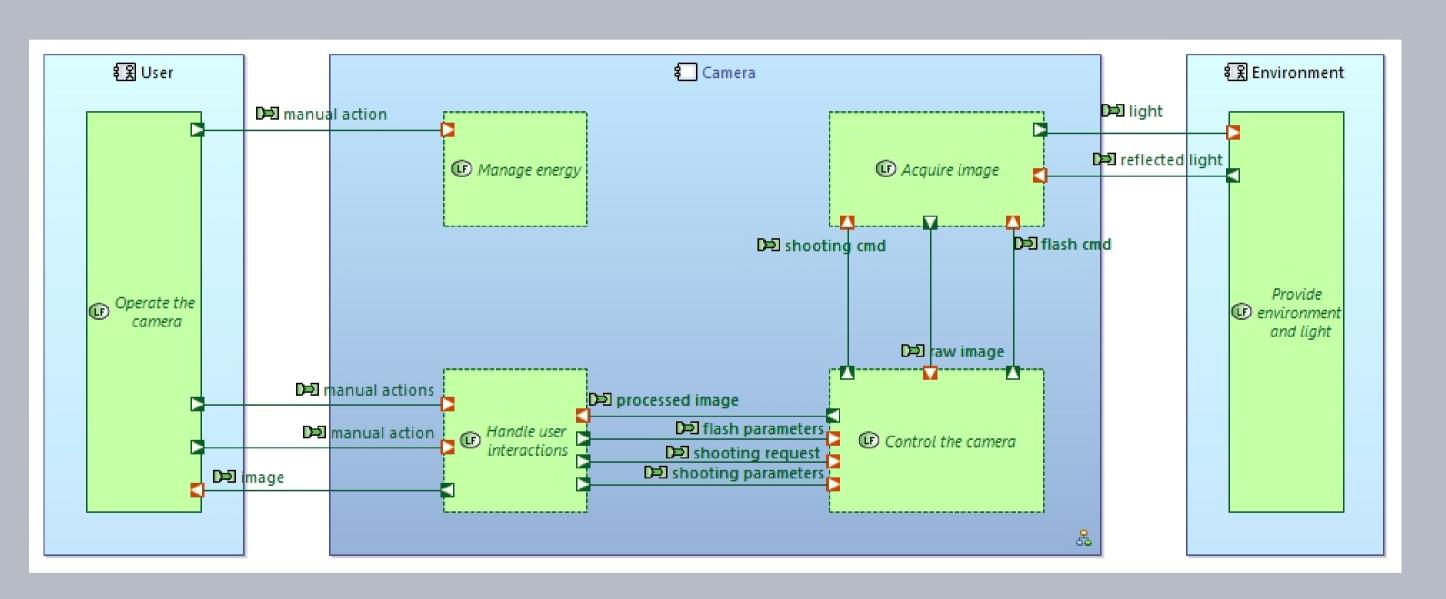
How the system will be developed and built Software vs. hardware allocation, specification of interfaces, deployment configurations, trade-off analysis

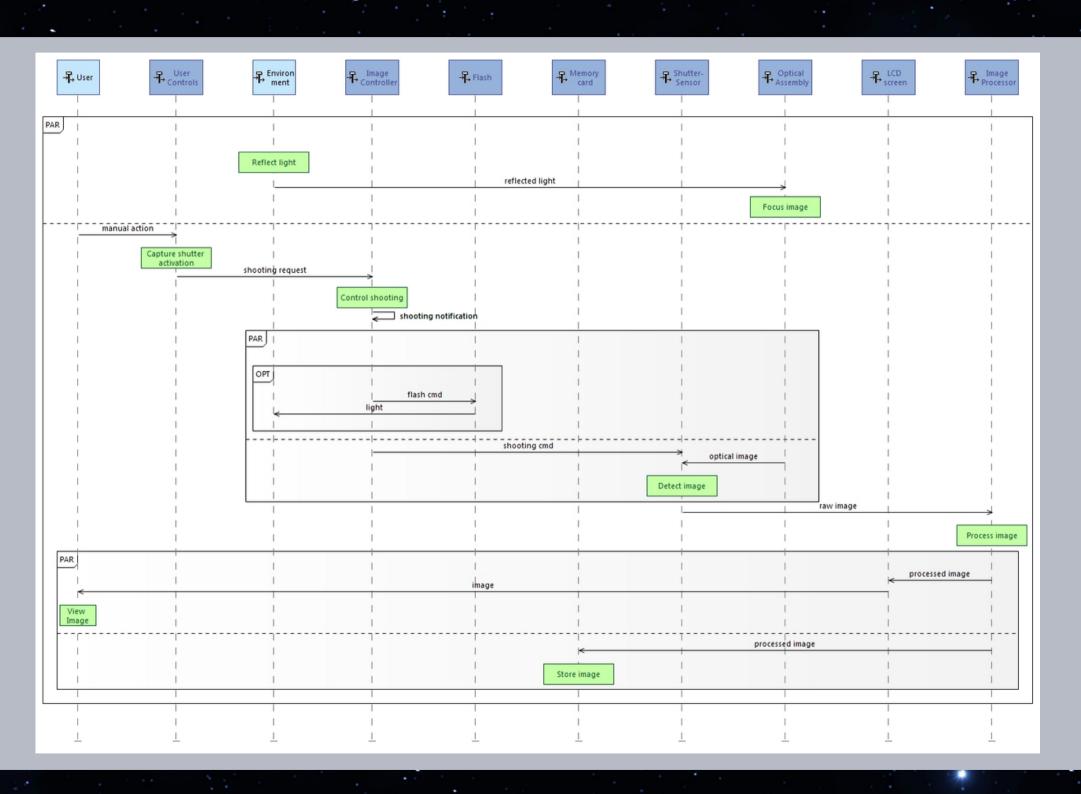
Formalize Component Requirements

Manage industrial criteria and integration strategy: what is expected from each designer/sub-contractor Specify requirements and interfaces of all configuration items


Source: Available at https://www.eclipse.org/capella/arcadia.html. Accessed on Nov 19th, 2022.

Capabilities




Architecture

