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Abstract— In this work, we evaluate a Uniform Circular
Array, featuring a reduced number of sensors and using small
sample support comprised of only a few snapshots, for 2-D
DoA estimation. Phase-mode transformation is a harmonics
decomposition that allows the use of Root-MUSIC algorithm for
azimuth estimation. Next, we address the challenging issues of
having an insufficient number of sensors in the array and limited
sample support, followed by a brief discussion of the techniques
that can be used to mitigate the degradation caused by the
two aforementioned limitations. Several numerical simulations
are conducted to evaluate the DoA estimation performance of
narrowband acoustic signals in different scenarios, having water
as propagating media. Both isolated and joint effects of the
limiting factors, as well as a simulated underwater environment.

Keywords— Uniform Circular Array, Phase-mode Transfor-
mation, Small Sample Support.

I. INTRODUCTION

Uniform Circular Arrays (UCAs) are capable of 2-D Di-
rection of Arrival (DoA) estimation, having omnidirectional
beampattern with isotropic azimuth properties [1]. These cha-
racteristics suit brandband sonar arrays, Radar and Communi-
cations Electronic Warfare Support Measures (RESM/CESM)
systems, 5G smart antennas, and secure directional commu-
nications. However, some essential array signal processing
techniques cannot be applied due to the particular form of
the array manifold vector [2]–[4], notably the Root-MUSIC
algorithm for DoA estimation.

This limitation can be circumvented via beamspace trans-
form based on harmonics, or phase mode, excitation [5], [6],
allowing the Root-MUSIC algorithm to be used. The number
of harmonics or phase modes depends on spatial sampling
and should produce an accurate description of the receiving
characteristics of the array in beamspace, otherwise resulting
in biased DoA estimations [7].

Root-MUSIC can be paired with reduced sample support
for the DoA solution, in which case, reasonable estimates
of the covariance matrix are unattainable [8]. Nevertheless,
several techniques can emulate the effects of the temporal
averaging present in a large number of snapshots. The con-
ditioning of the sample covariance matrix to a known ideal
Toeplitz structure can mitigate the undesired effects.

This paper focuses on analyzing UCA uncoupled 2-D
DoA estimation in element-space and beamspace, employing
combined techniques to tackle the issues of small sample
support and a reduced number of sensors. Performance re-
garding several parameters is evaluated in experiments of
gradually increasing complexity. Given that the phase-mode
transformation alters a portion of the array manifold as a

function of the azimuthal angle, most beamspace UCA works
focus only on 1-D Azimuth DoA.

In addition to the usual assessment of the non-isotropic
behavior of the zenithal angle (90°− elevation angle) esti-
mation, this work uses a set of computer experiments, simu-
lating air, and underwater narrow-band sound propagation, to
analyze the performance regarding the effects of incorporating
phase modes into UCAs featuring a reduced number of
sensors, as well as the implications of small sample support.
Specifically, we assess the effects on the performance of the
DoA estimation with and without contingency methods when
dealing with a reduced number of sensors and snapshots.
The contributions in this work are related to UCA DoA
estimation specifically in two dimensions using the Root-
MUSIC algorithm with a uniform circular array, subject to
a limited number of snapshots and sensors.

This paper is structured as follows. Section II discusses
beamspace DoA Estimation and the UCA signal model.
Sections III and IV deal with limited spatial and temporal
sampling, respectively. Finally, simulation results are addres-
sed in Section V followed by conclusion and final remarks in
Section VI.

II. BEAMSPACE DOA ESTIMATION

A. Element-space and Beamspace Signal Models
Consider a UCA with radius R and M sensors in the

absence of mutual coupling, as depicted in Fig. 1. With D

Fig. 1. Coordinate system for the array manifold of a UCA estimating azimuth
(ϕn) and zenith (θn) of a n-th plane wave hitting the array.

emitters and uncorrelated isotropic noise, we may express the
snapshot as follows.

x(k) = As(k) + n(k), (1)

where A =
[
a(ϕ1, θ1) · · · a(ϕD, θD)

]
is the M × D

array manifold matrix, s(k) is the D× 1 signal vector hitting



the center of the array and n(k) =
[
n1(k) · · · nM (k)

]T
is the M × 1 noise vector. The element-space covariance
matrix is then given as

Rx = E[x(k)xH(k)] = ARsA
H + σ2

nIM , (2)

where Rs is the covariance matrix of the input signals and
σ2
nIM the covariance matrix of the noise signal, σ2

n being the
noise variance and IM the M ×M identity matrix.

The element space array manifold vector with azimuth ϕ,
considering a given zenithal angle θ, is

a(ϕ) = [ejY R̄ cos(ϕ), ejY R̄ cos(ϕ− 2π
M ) . . . ejY R̄ cos(ϕ− 2π(M−1)

M )]T,
(3)

where Y = 2π/λ is the wavenumber and R̄ = R sin θ.
Not having a Vandermonde structure, a(ϕ) is not convenient
for using ROOT-MUSIC algorithm [9]. References [10]–[12]
employ harmonics excitation to overcome this limitation and
avoid an expensive 2-D grid search exploiting the equivalence
between spacial sampling and DFT of the output signal of the
circular aperture.

Through N -point DFT of the periodic output of the sam-
pled aperture and applying the Jacobi-Anger expansion [13]
ex cos(ϕ) =

∑∞
q=−∞ jqJq(x)e

jqϕ, each phase mode x̄n(k) of
the beamspace array signal output x̄(k) is then given by

x̄n(k) = s(k)
1√
M

∞∑
q=−∞

jqJq
(
Y R̄

)
ejqϕ

M−1∑
m=0

e
−j2πqm

M e
j2πnm

M ,

(4)

where Jq(�) is the Bessel function of the first kind and order
q. In the following, we apply several simplifications to Eq.
(4).

As in [14], analysing the inner summation in (4) leads to
M−1∑
m=0

e−j2πqm/Mej2πnm/M =

{
M, if q = n+ lM, l ∈ Z,
0, otherwise.

(5)
Applying additional simplifications as in [11], [15] to Eq. (4),
and considering the behavior of the Bessel functions depicted
in Fig. 2, we obtain

x̄n(k) ≈ s(k)
√
M

∞∑
l=−∞

jn±lMJn±lM

(
Y R̄

)
e(j(n±lM)ϕ)

≈ s(k)
√
M

[
jnJn

(
Y R̄

)
e(jnϕ)

∞∑
l=1

(
jn+lMJn+lM

(
Y R̄

)
e(j(n+lM)ϕ)

+jn−lMJn−lM

(
Y R̄

)
e(j(n−lM)ϕ)

)]
.

(6)

Considering l = 0, we can express x̄n(k) as a single term:

x̄n(k) ≈ s(k)
√
M jnJn

(
Y R̄

)
ejnϕ,−N ≤ n ≤ N, (7)

where N = ⌊(M − 1)/2⌋ denotes the largest integer smaller
than or equal to (M − 1)/2. Eq. (7) defines the entries of
x̄(k) and also its dimensions from the number of phase modes
involved in the beamspace transformation. Through this for-
mulation, we manage to transform the M×1 vector x(k) into
the (2N+1)×1 x̄(k) vector with 2N+1 ≤ M , for M odd, or
2N+1 ≤ M−1, for M even. The beamforming matrix for a
given N , defined as W = [w−N · · · w−1 w0 w1 · · · wN ],
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Fig. 2. Behavior of the Bessel functions and dependence on the zenith
parameter θ. The blue dashed curves are Bessel functions of the first kind of
order 0 to 5, in which the order n is smaller than the maximum argument
2π. The black curve is the Bessel function of the highest order less than the
maximum argument. The red dotted curves are Bessel functions in which the
order n is larger than the maximum argument.

Fig. 3. Our UCA 2-D DoA approach diagram.

may be expressed as an M×(2N+1) spatial DFT sub-matrix,
where each column represents the n-th excitation mode vector
wn, defined as

wn =
1√
M

[
1 e−j2π n

M · · · e−j2π
n(M−1)

M

]T
. (8)

According to Eq. (7), a good approximation for ā(ϕ) is

ā(ϕ) = WHa(ϕ) ≈ Jv(ejϕ), (9)

where v = [e−jϕN · · · e−jϕ 1 ejϕ · · · ejϕN ]T, and J is a
diagonal matrix whose elements are

√
MjnJn(Y R̄), −N ≤

n ≤ N . The (2N + 1) × 1 beamspace array manifold then
becomes

x̄(k) = WHA(ϕ)s(k)+WHn(k) = Ā(ϕ)s(k)+n̄(k). (10)

Recalling Eq. (2), Rx̄ can also be expressed as

Rx̄ = WHRxW = WHA(ϕ)RsA
H(ϕ)W +Rn̄. (11)

B. Decoupled Spectral MUSIC and Beamspace Root-MUSIC
DoA Estimation

The Vandermonde-structured portion of ā(ϕ), v(ejϕ), now
allows the use of the Root-MUSIC algorithm, which deals
only with azimuthal angle. The zenithal angle, present in R̄,
is yet to be dealt with. We can use the simple two-step process
for 2-D DoA estimation in Fig. 3. First, the azimuth DoA
is estimated via Root-MUSIC, assuming θ = 90°. Then, we
perform D 1-D Spectral MUSIC searches through the zenithal
angle parameter θ ∈ [0, π/2]. This scheme benefits from the
aspects of beamspace Root-MUSIC and solves the problem
with reduced computational effort when compared to 2-D
Spectral MUSIC.



C. Non-Isotropic Zenith DoA Behavior
The planar geometry of the UCA results in zenithal non-

isotropic behavior that affects 2-D DoA. Fig. 4 illustrates these
effects on the Absolute DoA Estimation Error (modulus |ϵ| of
the error) for the cases of only Signal of Interest (SoI) and
double sources (SoI and Interferer), using the DoA estimation
method mentioned in Section II-B.

From this figure, we conclude that the absolute zenith error
tends to increase with increasing source zenithal angle while
the absolute azimuth error decreases with increasing source
zenithal angle, except around the zenith of the interferer,
which is set to 50.7 degrees in our experiment. As also seen
in Fig. 4, estimation accuracy deteriorates in the two-source
case.
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Fig. 4. DoA error of a 16 sensor UCA (mapped in beamspace by 11 phase
modes) × zenith for 1 and 2 sources: SoI (ϕSoI = 37.9°, θSoI ∈ [10°, 90°])
and interferer (ϕInt = 120.5°, and θInt = 50.7°). 1,000 runs with 1,000
and 10 snapshots, R = λ, SIR of 3dB, SNR of 5dB. “Az” and “Ze” refers
to azimuth and zenith, respectively.

III. DOA ESTIMATION WITH REDUCED NUMBER OF
SENSORS

With a sufficient quantity of sensors for a given radius, each
phase mode can be satisfactorily expressed by a single Bessel
function of the first kind [14]. For an insufficient number
of sensors, Eq. (7) does not hold, and each phase mode is
expressed more closely by Eq. (6). Consider a UCA with a
reduced number of sensors, Msp < M , capable of exciting
only (2Nsp + 1) phase modes, with Nsp = ⌊Msp/2⌋. To
avoid spatial aliasing, the array needs (2N +1) phase modes
to express the receiving characteristics correctly.

The additional 2N − 2Nsp phase modes can only be
incorporated in x̄sp(k) if each entry x̄nsp

(k), nsp ∈
[−Nsp, . . . ,−1, 0, 1, . . . , Nsp], is expressed by more than one
phase mode [7], [16]. According to Eq. (6), it is possible to
make l ̸= 0 and express each x̄nsp(k) by as many phase
modes as necessary. In this fashion, (2N + 1) phase modes
are incorporated in x̄nsp

(k), even with only (2Nsp + 1) <
(2N + 1) entries, each entry expressed by

x̄nsp(k) = s(k)
√
M

[
jnspJnsp

(
Y R̄

)
e(jnspϕ) +

j±(nsp+lMsp)J±(nsp+lMsp)

(
Y R̄

)
e(±j(nsp+lMsp)ϕ)

]
,

(12)

with l such that nsp + lMsp = n. Such technique is imple-
mented with matrix H defined as

H = [D+

... I
... D−], (13)

where I is the (2Nsp + 1) identity matrix. D+ is a (2Nsp +
1)×(N−Nsp) matrix of the (N−Nsp) last columns of I and
D− is a (2Nsp + 1) × (N −Nsp) matrix of the (N −Nsp)
first columns of I when 3Nsp + 1 > N > Nsp. In [7] we
have the form of matrix H for any values of N and Nsp by
incorporating additional identity matrices. For example, when

5Nsp + 1 > N > 3Nsp + 1, H is [D+

... I
... I

... I
... D−].

As an example, the sparse UCA to be used in Subsection V-
A has an aperture that requires (2N + 1) = 11 phase modes.
However, with only 6 sensors, it is capable of exciting only
(2Nsp + 1) = 5 modes. Starting with the ideal (theoretical)
(2N +1) array manifold ā(ϕ) and the actual (2Nsp +1)× 1
sparse array manifold āsp(ϕ) are given by

ā(ϕ) =
[
J−5, J−4, . . . , J−1, J0, J1, . . . , J4, J5

]T
and

āsp(ϕ) =
[
J−2, J−1, J0, J1, J2

]T
,

(14)

where Jn = jnJn(Y R̄)ejnϕ. The (2Nsp+1)×1 āad(ϕ), with
additional phase modes incorporated, is obtained by

āad(ϕ) =Hāsp(ϕ) =

[
(J−2 + J3), (J−1 + J4),

(J−5 + J0 + J5), (J1 + J−4), (J2 + J−3

]T (15)

and āad replaces āsd as the (2Nsp + 1) = 5 array manifold
vector. We can see that, despite having the same dimension
(2Nsp+1) = 5, āad(ϕ) is expressed by (2N+1) = 11 phase
modes that map the array manifold with improved accuracy,
thereby minimizing the effects of insufficient spatial sampling.

IV. DOA ESTIMATION WITH SMALL SAMPLE SUPPORT

Subspace-based estimation methods are negatively impac-
ted by subspace leakage or loss of orthogonality caused by the
small sample support [8], [17], [18]. Next, we briefly review
the Subspace Leakage Minimization technique that deals with
conditioning the sample covariance matrix via minimizing
undesired correlation components. Under reduced number of
snapshots K, Eq. (11) can be approximated by

R̂x̄ = WHA(ϕ)R̂sA
H(ϕ)W+WHR̂nW+ T̂+ T̂H, (16)

where T̂ = A(ϕ)
[

1
K

∑K
k=1 ŝ(k)n̂

H(k)
]
, with ŝ(k) and n̂(k)

being estimates of the signal and noise vectors, respectively.
The first two terms of Eq. (16) are reasonable estimates

of Rx̄ in Eq. (11) for large K. For smaller K, however, the
residual last two cross-correlation terms must be minimized to
ensure that R̂x̄ converges to Rx̄ [8], as follows. Initially, we
utilize R̂x̄ and Root-MUSIC to obtain coarse DoA estimates
{ϕ′

1 . . . ϕ
′
D}, which are then used to obtain A(ϕ′). The

estimation of vector s(k) is carried out from Eq. (10) using
a least-squares solution [19] according to [18]

ŝ(k) =
[
AH(ϕ′)A(ϕ′)

]−1
AH(ϕ′)x(k), (17)

while n̂(k) = x(k) − A(ϕ′)ŝ(k). Further manipulation of
previous results, yields

T̂ = PR̂x̄

(
I(2N+1) −P

)
, (18)



where P = A(ϕ′)
[
AH(ϕ′)A(ϕ′)

]−1
AH(ϕ′) is the estimated

signal subspace projector and I(2N+1) − P is the respective
orthogonal projector. We can then devise an improved version
of R̂x̄ based on initial DoAs as

R̂′
x̄ = R̂x̄ − µ

(
T̂+ T̂H

)
, µ ∈ [0, 1] . (19)

The beamformer and the least-squares solution of s(k)
retain a systematic error, and the residual terms cannot be pre-
cisely estimated. We calculate the updated DoAs {ϕ′′

1 . . . ϕ
′′
D}

(the second iteration of DoA estimation) for each discrete
increment of µ and choose the optimum value that minimizes
the element-space MUSIC spectrum:

µ = arg min

∥∥∥∥∥
D∑

d=1

aH(µ, ϕ′′
d)ENEH

Na(µ, ϕ′′
d)

∥∥∥∥∥ , (20)

where EN contains the noise eigenvectors of the autocovari-
ance matrix [20].

V. NUMERICAL RESULTS

This section presents and discusses 2-D DoA estimation
simulation results highlighting the effects of the limiting fac-
tors and mitigating techniques described herein. We consider
two different scenarios, namely air and underwater. In the
later, we assess the UCA behavior in a shallow-water marine
environment that includes multipath propagation owing to
surface and bottom reflections.

We have shared parameters for both experiments: UCA with
radius R = λ, two narrowband sources with slight zenithal
separation, Signal of Interest (SoI) and Interferer with a 3 dB
Signal-to-Interference Ratio (SIR), and isotropic AWGN. All
results correspond to an average of 1,000 independent runs.

A. Simple Multivariate Evaluations

This subsection shows several UCA 2-D DoA estimations
by altering individual limiting parameters (SNR, number of
sensors, and quantity of snapshots). In all simulations, the
source’s angular positions are: SoI with ϕSoI = 37.9°,
θSoI = 57.7°, and Interferer with ϕInt = 120.5°, θInt =
50.7° Subspace leakage results in an unclear definition of
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Fig. 5. Incorporated phase modes in 2-D DoA estimation. UCA having six
sensors with a spacing of 1.047λ, resolving a single (above) and two (below)
narrowband source with angular positions ϕSoI = 37.9° and θSoI = 57.7°.
SNR of 10 dB and sample support of 1,000 snapshots. Additional phase
modes are incorporated (from an initial 5 up to a total of 13). The vertical
dotted line indicates the optimum number of phase modes.

signal and noise eigenvectors and difficulties in sorting signal
eigenvectors by magnitude. Leakage Minimization addresses
this problem and is dependent of the factor µ in order to
estimate and reduce cross-correlation components, mitigating
subspace leakage. In Fig. 6 we can see the effects of the factor
µ in the mitigation of the small sample support problem and
the selection of the value utilized in previous results.
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Fig. 6. Effects of factor µ in small sample support UCA 2-D DoA. 16 sensor
UCA mapped by 11 phase modes. Resolving two narrowband sources with
angular positions ϕSoI = 37.9°, θSoI = 57.7°, ϕInt = 120.5° and θInt =
50.7°. SNR 10 dB and SIR 3 dB. Sample support 1,000 and 10 snapshots.

For the case of a limited number of sensors, we used a
sample support of 1,000 snapshots. The UCA has only six
sensors with a spacing of 1.047λ, resulting in spatial aliasing.
Only 5 phase modes (N = 2) map the thinned array; however,
as shown in Fig. 5, incorporating additional phase modes—
up to 11—considerably improves the estimations. For the case
of small sample support, the UCA has 16 sensors, mapped in
beamspace by 13 phase modes (N = 6) and with element
spacing of 0.393λ. Sample support ranges from 100 to single
snapshots and µ = 0.8.
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Fig. 7. Decreasing sample support in UCA 2-D DoA. SoI (above), Interferer
(below) estimation errors as a function of the number of snapshots in the
presence (SSS) and absence (no SSS) of small sample support mitigation.
UCA with 16 sensors mapped by 11 phase modes. Narrowband source with
angular positions ϕSoI = 37.9°, θSoI = 57.7°. SIR of 5 dB and SNR of
10 dB. µ of 0.9.

Fig. 7 depicts the influence of decreasing sample support,
where the plots with SSS indicate the use of small sample



support mitigation. The absolute error increases with the
reduction of snapshots. Both techniques (additional phase
modes and matrix conditioning) can improve solutions and
even extend the lower limits of sample support where DoAs
can be accurately estimated.

B. Simultaneous Spatial And Temporal Evaluations

In this section, we address the problems of reduced spatial
and temporal sampling simultaneously. Employing combined
phase mode incorporation and Leakage Minimization techni-
ques, we evaluate their joint behavior similarly to the isolated
multivariate simulations.

The specific parameters for these simulations are: an en-
semble of 1.000 independent runs, sources with a SIR of 3
dB, and AWGN with an SNR of 10 dB. Six sensors UCA
mapped in beamspace by 5, and up to 13, phase modes.
Leakage Minimization µ factor of 0.8 and sample support
ranging from 1.000 to 5 snapshots. Angular positions are the
same as in Section V-A.
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Fig. 8. Combined effects of incorporating phase modes in small sample
support 2-D DoA estimation employing Leakage Minimization (above)
and without Leakage Minimization (below). UCA having six sensors with
spacing of 1.047λ, resolving two narrowband sources with angular positions
ϕSoI = 37.9°, θSoI = 57.7°, ϕInt = 120.5° and θInt = 50.7°. SIR of
3 dB, SNR of 10 dB and small sample support of 10 snapshots. Additional
phase modes are incorporated (from an initial 5 up to a total of 13).

Starting with a more detailed analysis of the number of
phase modes for beamspace mapping, we show the effects
of incorporating phase modes to a small sample support 2-D
DoA estimation, both in the presence and absence of Leakage
Minimization. Fig. 8 depicts increasing incorporated phase
modes solution errors for estimations with only 10 snapshots.

Continuing, with a greater focus on small sample support,
Fig. 9 depict the combined behavior of beamspace mapping,
by 5 and 11 phase modes, and Leakage Minimization for
decreasing sample support.

The combined results tend to behave similarly to the
individual mitigating techniques results in Section V-A, where
additional phase modes yield better results in spatially aliased
solutions and minimized leakage solutions yield better results
than small sample support solutions.

However, we can observe that, for the combined limi-
ting factors scenario, leakage minimization contributions for
the overall improvements are somewhat more pronounced,
especially for the Interferer DoA solutions. This behavior
can be seen in Fig. 9, where the spatially aliased, leakage
minimized solutions can be better than solutions with incor-
porated phase modes but without leakage minimization. These
observations also point to mutual interference of the two
mitigating techniques (phase modes incorporation and leakage
minimization), as these techniques are based on different
principles to improve DoA estimation.
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Fig. 9. Combined behavior of beamspace mapping and Leakage Minimization
with decreasing sample support for azimuth (above) and zenith (below)
DoAs of SoI and Interferer. UCA has six sensors with a spacing of 1.047λ
and beamspace mapping with 5 and 11 (5+6 incorporated) phase modes.
Resolving two narrowband sources with angular positions ϕSoI = 37.9°,
θSoI = 57.7°, ϕInt = 120.5° and θInt = 50.7°. SIR of 3 dB and SNR of
10 dB.

C. Underwater Environment Simulation

This subsection employs the methods described herein in
conditions similar to a real shallow underwater scenario. We



utilize real-life signals from the samples database of ShipsEar,
available in http://atlanttic.uvigo.es/underwaternoise/. We as-
sume two surface sources, namely a cruise ship and a motor-
boat, immersed in isotropic AWGN with SNR of 15dB and
simulate the effects of surface and bottom reflections, resulting
in multipath propagation.

The submerged UCA has 32 sensors mapped by 15 phase
modes (N = 7), R = λ and the central frequency was set
to 1 kHz. Sources’ angular position are cruise ship (SoI)
ϕCS = 23.1°, θCS = 48.5° and motorboat (Interferer)
with ϕMB = 142°, θMB = 34.7°, and SIR of 5dB. Their
respective multipath spurious signals are hitting the array from
ϕCSmulti = 26°, θCSmulti = 19.3°, and ϕMBmulti = 143.9°,
θMBmulti = 11.5°. These spurious multipath DoAs represent
surface reflections and slight azimuthal refraction. Spurious
multipath sources have an attenuation of 15dB.

Despite the unattended problem of correlated sources, re-
sults depicted in Fig. 10 show that the leakage minimization
technique, indicated by SSS in the legend, improved results,
mainly with Root-MUSIC azimuth estimation. Also, using a
single value of µ for a wide range of sample support may
have different and even contradictory effects.
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Fig. 10. The influence of decreasing sample support in 2-D DoA of two
sources with simulated underwater multipath propagation.

VI. CONCLUSION AND FINAL REMARKS

This paper shows that reduced spatial sampling and inaccu-
rate beamspace mapping effects can be satisfactorily mitigated
by incorporating additional phase modes. We observed that
matrix conditioning could mitigate biased covariance matri-
ces, allowing even a single snapshot DoA estimation. In the
underwater environment simulation, the effects of multipath,
akin to correlated sources, are present. Although not within
the scope of this work, the mitigation techniques addressed
herein applied to correlated sources in a small sample support
situation yielded favorable results.

Our results show that the azimuthal DoA (estimated with
Root-MUSIC) suffers more from the reduced number of
sensors and small sample support than the zenithal DoA
(estimated with Spectral MUSIC). The methods and results
of this work indicate reduced estimation speeds, due to
simplified computations, and good accuracy even when em-
ploying several techniques simultaneously and with real-life

broadband signals. These attributes can be particularly suited,
for example, for 360° coverage phased array for broadband
passive detection and tracking, such as Electronic Warfare
equipment or Cylindrical Hydrophone Arrays (CHA) aboard
surface vessels and submarines.
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